scholarly journals Wildlife Is a Potential Source of Human Infections of Enterocytozoon bieneusi and Giardia duodenalis in Southeastern China

2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Zhang ◽  
Rongsheng Mi ◽  
Lijuan Yang ◽  
Haiyan Gong ◽  
Chunzhong Xu ◽  
...  

Wildlife is known to be a source of high-impact pathogens affecting people. However, the distribution, genetic diversity, and zoonotic potential of Cryptosporidium, Enterocytozoon bieneusi, and Giardia duodenalis in wildlife are poorly understood. Here, we conducted the first molecular epidemiological investigation of these three pathogens in wildlife in Zhejiang and Shanghai, China. Genomic DNAs were derived from 182 individual fecal samples from wildlife and then subjected to a nested polymerase chain reaction–based sequencing approach for detection and characterization. Altogether, 3 (1.6%), 21 (11.5%), and 48 (26.4%) specimens tested positive for Cryptosporidium species, E. bieneusi, and G. duodenalis, respectively. Sequence analyses revealed five known (BEB6, D, MJ13, SC02, and type IV) and two novel (designated SH_ch1 and SH_deer1) genotypes of E. bieneusi. Phylogenetically, novel E. bieneusi genotype SH_deer1 fell into group 6, and the other genotypes were assigned to group 1 with zoonotic potential. Three novel Cryptosporidium genotypes (Cryptosporidium avian genotype V-like and C. galli-like 1 and 2) were identified, C. galli-like 1 and 2 formed a clade that was distinct from Cryptosporidium species. The genetic distinctiveness of these two novel genotypes suggests that they represent a new species of Cryptosporidium. Zoonotic assemblage A (n = 36) and host-adapted assemblages C (n = 1) and E (n = 7) of G. duodenalis were characterized. The overall results suggest that wildlife act as host reservoirs carrying zoonotic E. bieneusi and G. duodenalis, potentially enabling transmission from wildlife to humans and other animals.

2021 ◽  
Vol 22 (6) ◽  
Author(s):  
Sri Ramadiana ◽  
Dwi Hapsoro ◽  
Rusdi Evizal ◽  
Kukuh Setiawan ◽  
Agus Karyanto ◽  
...  

Abstract. Ramadiana S, Hapsoro D, Evizal R, Setiawan K, Karyanto A, Yusnita. 2021. Genetic diversity among 24 clones of robusta coffee in Lampung based on RAPD markers. Biodiversitas 22: 3122-3129. This study aimed to estimate the genetic diversity among 24 clones of Robusta coffee from Lampung, Indonesia, by use of RAPD markers. The clones consisted of 18 local and 6 BP clones. These BP clones were developed from a breeding program of The Indonesian Coffee and Cocoa Research Institute. Genomic DNAs extracted from these clones were subjected to polymerase chain reaction and the amplified products were run using gel electrophoresis. Eleven random primers produced clear, reproducible, scorable bands. Fifty-four of 86 bands showed polymorphism and were used to construct a dendrogram based on UPGMA Jaccard's Similarity Coefficients. The genetic base of the population was narrow (average genetic similarity 68.4%), ranging from 26-93%. The genetic similarity of the local clones was higher than that of BP clones. The clones were clustered into five groups. Group 1 contained one clone (BP 534), while each of Group II-V contained more than one clone. The average genetic similarity of BP 534 to each clone of Group II-V was 41%. The genetic similarity of clones in Group II, III, IV, and V were 55.5%, 43.0%, 81.1%, and 80.1%, respectively. This research should be very useful for selecting parents in a breeding program to produce better clones of Robusta coffee.


Parasite ◽  
2019 ◽  
Vol 26 ◽  
pp. 24 ◽  
Author(s):  
Run Luo ◽  
Leiqiong Xiang ◽  
Haifeng Liu ◽  
Zhijun Zhong ◽  
Li Liu ◽  
...  

Enterocytozoon bieneusi is a common intestinal pathogen in a variety of animals. While E. bieneusi genotypes have become better-known, there are few reports on its prevalence in the Tibetan pig. This study investigated the prevalence, genetic diversity, and zoonotic potential of E. bieneusi in the Tibetan pig in southwestern China. Tibetan pig feces (266 samples) were collected from three sites in the southwest of China. Feces were subjected to PCR amplification of the internal transcribed spacer (ITS) region. Enterocytozoon bieneusi was detected in 83 (31.2%) of Tibetan pigs from the three different sites, with 25.4% in Kangding, 56% in Yaan, and 26.7% in Qionglai. Prevalence varies according to age group, from 24.4% (age 0–1 years) to 44.4% (age 1–2 years). Four genotypes of E. bieneusi were identified: two known genotypes EbpC (n = 58), Henan-IV (n = 24) and two novel genotypes, SCT01 and SCT02 (one of each). We compare our results with a compilation of published results on the host range and geographical distribution of E. bieneusi genotypes in China. Phylogenetic analysis showed these four genotypes clustered to group 1 with zoonotic potential. Multilocus sequence typing (MLST) analysis of three microsatellites (MS1, MS3, MS7) and one minisatellite (MS4) was successful in 47, 48, 23 and 47 positive specimens and identified 10, 10, 5 and 5 genotypes at four loci, respectively. This study indicates the potential danger of E. bieneusi to Tibetan pigs in southwestern China, and offers basic advice for preventing and controlling infections.


2020 ◽  
Vol 119 (3) ◽  
pp. 1101-1108 ◽  
Author(s):  
Falei Li ◽  
Rui Wang ◽  
Yaqiong Guo ◽  
Na Li ◽  
Yaoyu Feng ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Zhao ◽  
Guang-Xu Ren ◽  
Yu Qiang ◽  
Jiaqi Li ◽  
Jinkang Pu ◽  
...  

Enterocytozoon bieneusi is a microsporidian and zoonotic species. This study investigated the prevalence and distribution of E. bieneusi genotypes in farmed masked palm civets using nested PCR, as well as assessed their zoonotic potential by phylogenetic analysis of the ITS region of the rRNA region. Here, we collected 251 fecal specimens from farmed masked palm civets (Paguma larvata) from the Hainan Island, China. In total, 128 of 251 samples were positive for E. bieneusi, with an average infection rate of 51.0%. Seventeen genotypes were identified including 12 known genotypes—HNR-VI (n = 56), SHR1 (n = 45), SHW7 (n = 6), KIN-1 (n = 3), D (n = 3), New1 (n = 3), EbpC (n = 2), CHC5 (n = 1), CHG19 (n = 1), CHN4 (n = 1), EbpA (n = 1), and Henan-III (n = 1)—and five novel genotypes (HNPL-I to HNPL-II; one each). Phylogenetic analysis categorized these genotypes into two groups. Thirteen of them were members of the zoonotic group 1, and the remaining four genotypes were in group 12. This study has shown that the infection rates of E. bieneusi in masked palm civets from Hainan were relatively high and provide baseline data to control and prevent microsporidiosis in farm-related communities. Therefore, infections in masked palm civets with zoonotic genotypes D, EbpC, CHN4, EbpA, KIN-1, and Henan-III should be considered potential threats to public health.


2018 ◽  
Author(s):  
Run Luo ◽  
Leiqiong Xiang ◽  
Haifeng Liu ◽  
Zhijun Zhong ◽  
Li Liu ◽  
...  

AbstractEnterocytozoon bieneusi is a common intestinal pathogen and a major cause of diarrhea and enteric diseases in a variety of animals. While the E. bieneusi genotype has become better-known, there are few reports on its prevalence in the Tibetan pig. This study investigated the prevalence, genetic diversity, and zoonotic potential of E. bieneusi in the Tibetan pig in southwestern China. Tibetan pig feces (266 samples) were collected from three sites in the southwest of China. Feces were subjected to PCR amplification of the internal transcribed spacer (ITS) region. E. bieneusi was detected in 83 (31.2%) of Tibetan pigs from the three different sites, with 25.4% in Kangding, 56% in Yaan and 26.7% in Qionglai. Age group demonstrated the prevalence of E. bieneusi range from 24.4%(aged 0 to 1 years) to 44.4%(aged 1 to 2 years). Four genotypes of E. bieneusi were identified: two known genotypes EbpC (n=58), Henan-IV (n=24) and two novel genotypes, SCT01 and SCT02 (one of each). Phylogenetic analysis showed these four genotypes clustered to group 1 with zoonotic potential. Multilocus sequence typing (MLST) analysis three microsatellites (MS1, MS3, MS7) and one minisatellite (MS4) revealed 47, 48, 23 and 47 positive specimens were successfully sequenced, and identified ten, ten, five and five genotypes at four loci, respectively. This study indicates the potential danger of E. bieneusi to Tibetan pigs in southwestern China, and offers basic data for preventing and controlling infections.


2022 ◽  
Vol 8 ◽  
Author(s):  
Pamela C. Köster ◽  
Eva Martínez-Nevado ◽  
Andrea González ◽  
María T. Abelló-Poveda ◽  
Hugo Fernández-Bellon ◽  
...  

We assessed the occurrence, genetic diversity, and zoonotic potential of four protozoan (Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Giardia duodenalis), one stramenopile (Blastocystis sp.), one microsporidia (Enterocytozoon bieneusi), and two ciliate (Balantioides coli, Troglodytella abrassarti) intestinal parasite or commensal protist species in captive non-human primates (NHP) and their zookeepers from six European zoological gardens in France (n = 1), Germany (n = 1), and Spain (n = 4). Faecal samples from NHP (n = 454) belonging to 63 species within 35 genera and humans (n = 70) were collected at two sampling periods in each participating institution between October 2018-August 2021. Detection and species identification was accomplished by PCR and Sanger sequencing of the ssu rRNA and/or ITS genes. Sub-genotyping analyses using specific markers were conducted on isolates positive for G. duodenalis (gdh, bg, tpi) and Cryptosporidium spp. (gp60). Overall, 41.0% (186/454) and 30.0% (21/70) of the faecal samples of NHP and human origin tested positive for at least one intestinal protist species, respectively. In NHP, Blastocystis sp. was the most prevalent protist species found (20.3%), followed by G. duodenalis (18.1%), E. dispar (7.9%), B. coli and T. abrassarti (1.5% each), and Cryptosporidium spp. and E. bieneusi (0.9% each). Occurrence rates varied largely among NHP host species, sampling periods, and zoological institutions. The predominant protist species found in humans was Blastocystis sp. (25.7%), followed by Cryptosporidium spp. (2.9%), E. dispar (1.4%), and G. duodenalis (1.4%). Sequencing of PCR-positive amplicons in human and/or NHP confirmed the presence of Cryptosporidium in six isolates (C. hominis: 66.7%, C. parvum: 33.3%), G. duodenalis in 18 isolates (assemblage A: 16.7%, assemblage B: 83.3%), Blastocystis in 110 isolates (ST1:38.2%, ST2:11.8%, ST3: 18.2%, ST4: 9.1%, ST5: 17.3%, ST8: 2.7%, ST13: 0.9%), and E. bieneusi in four isolates (CM18: 75.0%, Type IV: 25.0%). Zoonotic transmission events involving Blastocystis ST1–ST4 were identified in four zoological institutions. Zoonotic transmission of C. hominis was highly suspected, but not fully demonstrated, in one of them. Monitoring of intestinal protist species might be useful for assessing health status of captive NHP and their zookeepers, and to identify transmission pathways of faecal-orally transmitted pathogens.


2015 ◽  
Vol 60 (4) ◽  
Author(s):  
Gabriela Štrkolcová ◽  
Marián Maďar ◽  
Barbara Hinney ◽  
Mária Goldová ◽  
Jana Mojžišová ◽  
...  

AbstractThe unicellular parasite Giardia duodenalis has been divided to eight assemblages (A-H) from which A and B have the most important zoonotic potential. All remaining genotypes have a strong commitment to various host animals. We present here the first clinical case of a human infection with the dog-specific genotype C of G. duodenalis in Slovakia. The patient, 44-year-old woman, suffered from long-term diarrhoea, abdominal pain, anorexia, weight loss, severe itching and dermatitis in the perianal area. The initial microscopic diagnosis was completed by a nested polymerase chain reaction (PCR) which revealed the first evidence of human giardiasis caused by the dog-specific genotype of G. duodenalis on a European scale. A possible role of dogs in zoonotic transmission of giardiasis and its epidemiological and public health relevance is accentuated.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yingying Fan ◽  
Xinrui Wang ◽  
Ruohong Yang ◽  
Wentao Zhao ◽  
Na Li ◽  
...  

Abstract Background The waterborne pathogens Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and Cyclospora cayetanensis can cause intestinal diseases in humans. An understanding of their occurrence and transport in the environment is essential for accurate quantitative microbial risk assessment. Methods A total of 238 influent samples were collected from four wastewater treatment plants (WWTPs) and 88 samples from eight sewer locations in Guangzhou, China. PCR-based tools were used to detect and genetically characterize Cryptosporidium spp., G. duodenalis and E. bieneusi. Eimeria spp. and Cyclospora spp. were also analyzed to assess the sources of Cryptosporidium spp., G. duodenalis and E. bieneusi in wastewater. Results The overall occurrence rates in the WWTP and sewer samples were 14.3% (34/238) and 13.6% (12/88) for Cryptosporidium spp., 55.5% (132/238) and 33.0% (29/88) for G. duodenalis, 56.3% (134/238) and 26.1% (23/88) for E. bieneusi and 45.4% (108/238) and 47.7% (42/88) for Eimeria spp., respectively. Altogether, 11 Cryptosporidium species and genotypes, six G. duodenalis genotypes, 11 E. bieneusi genotypes and four C. cayetanensis were found, together with the presence of nine Eimeria species. The common occurrence of Cryptosporidium rat genotype IV, C. muris and Eimeria papillata and E. nieschulzi suggested that rodents were significant sources of the enteric pathogens detected in the wastewater samples. Conclusions While the dominant Cryptosporidium spp. detected in the raw wastewater sampled in this study are not pathogenic to humans, the widely detected G. duodenalis assemblage A and E. bieneusi genotypes D and Type IV are well-known zoonotic pathogens. Further studies are needed to monitor the occurrence of these waterborne pathogens in WWTPs to better understand their transmission and environmental transport in China.


Parasite ◽  
2020 ◽  
Vol 27 ◽  
pp. 65
Author(s):  
Xin-Li Zheng ◽  
Huan-Huan Zhou ◽  
Gangxu Ren ◽  
Tian-Ming Ma ◽  
Zong-Xi Cao ◽  
...  

Enterocytozoon bieneusi is an intestinal pathogen that infects a wide range of species, including humans. Cattle constitute an important host for E. bieneusi; however, there is a scarcity of information on the prevalence and genotyping of E. bieneusi in cattle in the Hainan Province of China. In this study, PCR analysis of 314 fecal samples from cattle in six cities of Hainan was performed for genotype identification. The average prevalence of E. bieneusi in these animals was 9.9% (31/314), and ranged from 0.0% (0/12) to 20.5% (8/39). Five known genotypes – EbpC (n = 14), BEB4 (n = 12), J (n = 2), I (n = 1), and CHG5 (n = 1) – and a novel genotype: HNC-I (n = 1) – were identified. Genotypes EbpC and HNC-I were placed in zoonotic Group 1, and the remaining four genotypes (BEB4, J, I, and CHG5) were placed in Group 2. Since 93.5% of the genotypes found in the cattle (29/31) (EbpC, BEB4, J, and I) have previously been found in humans, these genotypes are probably involved in the transmission of microsporidiosis to humans.


Sign in / Sign up

Export Citation Format

Share Document