scholarly journals Integrative Analysis of LGR5/6 Gene Variants, Gut Microbiota Composition and Osteoporosis Risk in Elderly Population

2021 ◽  
Vol 12 ◽  
Author(s):  
Dong-sheng Di ◽  
Can Li ◽  
Yu Dai ◽  
Mu-hong Wei ◽  
Shan-shan Wang ◽  
...  

Objective: This study aimed to explore the relationships between the common variants of R-spondin/Wnt signaling genes, gut microbiota composition, and osteoporosis (OP) risk in elderly Chinese Han population.Design: Dual-energy X-ray absorptiometry was used to obtain the OP-associated measurements at multiple skeleton sites among all 1,168 participants. Genotyping data was obtained by using the next-generation sequencing in the discovery stage (n = 400, 228 OP patients) and SNPscan technology in the replication stage (n = 768, 356 OP patients). Bioinformatic analysis was performed to provide more evidence for the genotype-OP associations. The 16S ribosomal RNA gene high-throughput sequencing technology was adopted to explore OP-associated gut microbiota variations.Results: The genetic variants of rs10920362 in the LGR6 gene (P-FDR = 1.19 × 10–6) and rs11178860 in the LGR5 gene (P-FDR = 1.51 × 10–4) were found to associate with OP risk significantly. Several microbial taxa were associated with the BMDs and T-scores at multiple skeleton sites. The associations between rs10920362 and BMD-associated microbiota maintained significance after adjusting confounders. The rs10920362 CT/TT genotype associated with a decreased relative abundance of Actinobacteria (β = −1.32, P < 0.001), Bifidobacteriaceae (β = −1.70, P < 0.001), and Bifidobacterium (β = −1.70, P < 0.001) compared to the CC genotype.Conclusion: Our findings suggested that the variants loci of LGR6 may be associate with OP pathogenesis via gut microbiota modifications. The relationship between host genetics and gut microbiome provides new perspectives about OP prevention and treatment.

mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Sandi Wong ◽  
W. Zac Stephens ◽  
Adam R. Burns ◽  
Keaton Stagaman ◽  
Lawrence A. David ◽  
...  

ABSTRACT Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. IMPORTANCE The ability of gut microbiota to influence host health is determined in part by their composition. However, little is known about the relationship between gut and environmental microbiotas or about how ontogenetic differences in dietary fat impact gut microbiota composition. We addressed these gaps in knowledge using zebrafish, an ideal model organism because their environment can be thoroughly sampled and they can be fed the same diet for their entire lives. We found that microbial communities in the gut changed as zebrafish aged under conditions of a constant diet and became increasingly different from microbial communities in their surrounding environment. Further, we observed that the amount of fat in the diet had distinct age-specific effects on gut community assembly. These results reveal the complex relationships between microbial communities residing in the intestine and those in the surrounding environment and show that these relationships are shaped by dietary fat throughout the life of animal hosts.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2188 ◽  
Author(s):  
Ning-Ning Zhang ◽  
Wen-Hui Guo ◽  
Han Hu ◽  
A-Rong Zhou ◽  
Qing-Pei Liu ◽  
...  

This study investigated the influence of Canarium album extract (CAext) on intestinal microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium dose caused a significant increase in the proportion of Akkermansia. These findings suggested that CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects on Akkermansia.


2018 ◽  
Vol 120 (9) ◽  
pp. 1014-1022 ◽  
Author(s):  
Daniel Lin ◽  
Brandilyn A. Peters ◽  
Charles Friedlander ◽  
Hal J. Freiman ◽  
James J. Goedert ◽  
...  

AbstractIncreasing evidence indicates that gut microbiota may influence colorectal cancer risk. Diet, particularly fibre intake, may modify gut microbiota composition, which may affect cancer risk. We investigated the relationship between dietary fibre intake and gut microbiota in adults. Using 16S rRNA gene sequencing, we assessed gut microbiota in faecal samples from 151 adults in two independent study populations: National Cancer Institute (NCI), n 75, and New York University (NYU), n 76. We calculated energy-adjusted fibre intake based on FFQ. For each study population with adjustment for age, sex, race, BMI and smoking, we evaluated the relationship between fibre intake and gut microbiota community composition and taxon abundance. Total fibre intake was significantly associated with overall microbial community composition in NYU (P=0·008) but not in NCI (P=0·81). In a meta-analysis of both study populations, higher fibre intake tended to be associated with genera of class Clostridia, including higher abundance of SMB53 (fold change (FC)=1·04, P=0·04), Lachnospira (FC=1·03, P=0·05) and Faecalibacterium (FC=1·03, P=0·06), and lower abundance of Actinomyces (FC=0·95, P=0·002), Odoribacter (FC=0·95, P=0·03) and Oscillospira (FC=0·96, P=0·06). A species-level meta-analysis showed that higher fibre intake was marginally associated with greater abundance of Faecalibacterium prausnitzii (FC=1·03, P=0·07) and lower abundance of Eubacterium dolichum (FC=0·96, P=0·04) and Bacteroides uniformis (FC=0·97, P=0·05). Thus, dietary fibre intake may impact gut microbiota composition, particularly class Clostridia, and may favour putatively beneficial bacteria such as F. prausnitzii. These findings warrant further understanding of diet–microbiota relationships for future development of colorectal cancer prevention strategies.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 769
Author(s):  
Xiaoqi Wang ◽  
Zhichao Zhang ◽  
Xiaoping Wang ◽  
Qi Bao ◽  
Rujing Wang ◽  
...  

Three sampling strategies with a 16s rRNA high-throughput sequencing and gene expression assay (by RT-PCR) were designed, to better understand the host and probiotics effect on gut microbiota in sheep. Sampling: (1) colon contents and back-fat tissues from small-tailed Han sheep (SHS), big-tailed Hulun Buir sheep (BHBS), and short-tailed Steppe sheep (SHBS) (n = 12, 14, 12); (2) jejunum, cecum and colon contents, and feces from Tan sheep (TS, n = 6); (3) feces from TS at 4 time points (nonfeeding, 30 and 60 feeding days, and stop feeding 30 days) with probiotics supplementation (n = 7). The results indicated SHS had the highest Firmicutes abundance, the thinnest back-fat, and the lowest expression of C/EBPβ, C/EBPδ, ATGL, CFD, and SREBP1. Some bacteria orders and families could be potential biomarkers for sheep breeds with a distinct distribution of bacterial abundance, implying the host genotype is predominant in shaping unique microbiota under a shared environment. The microbiota diversity and Bifidobacterial populations significantly changed after 60 days of feeding but restored to its initial state, with mostly colonies, after 30 days ceased. The microbiota composition was greatly different between the small and large intestines, but somewhat different between the large intestine and feces; feces may be reliable for studying large intestinal microbiota in ruminants.


2019 ◽  
Vol 28 (3) ◽  
pp. 327-337 ◽  
Author(s):  
Andrea Ticinesi ◽  
Antonio Nouvenne ◽  
Vincenzo Corrente ◽  
Claudio Tana ◽  
Francesco Di Mario ◽  
...  

Gut microbiota composition and functionality are involved in the pathophysiology of several intestinal andextraintestinal diseases, and are increasingly considered a modulator of local and systemic inflammation.However, the involvement of gut microbiota in diverticulosis and in diverticular disease is still poorlyinvestigated. In this review, we critically analyze the existing evidence on the fecal and mucosa-associatedmicrobiota composition and functionality across different stages of diverticular disease. We also explorethe influence of risk factors for diverticulosis on gut microbiota composition, and speculate on the possiblerelevance of these associations for the pathogenesis of diverticula. We overview the current treatments ofdiverticular disease targeting the intestinal microbiome, highlighting the current areas of uncertainty andthe need for future studies. Although no conclusive remarks on the relationship between microbiota anddiverticular disease can be made, preliminary data suggest that abdominal symptoms are associated withreduced representation of taxa with a possible anti-inflammatory effect, such as Clostridium cluster IV, andovergrowth of Enterobacteriaceae, Bifidobacteria and Akkermansia. The role of the microbiota in the earlystages of the disease is still very uncertain. Future studies should help to disentangle the role of the microbiomein the pathogenesis of diverticular disease and its progression towards more severe forms.


2020 ◽  
Author(s):  
Tuoyu He ◽  
Yun Jiang ◽  
Pengpeng Wang ◽  
Jianguo Xiang ◽  
Wangcheng Pan

AbstractThe composition and abundance of gut microbiota is essential for host health and immunity. Gut microbiota is symbiotic with the host, so changes in the host diet, development, and health will lead to changes in the gut microbiota. Conversely, changes in the gut microbiota also affect the host conditions. In this experiment, 16S rRNA high-throughput sequencing was used to compare the gut microbiota composition of 5 healthy Paa Spinosa and 6 P. spinosa with rotten-skin disease. Results: the gut microbiota composition was significant difference between diseased P. spinosa and the healthy P. spinosa; LEfSe analysis showed that the relative abundance of Methanocorpusculum, Parabacteroides, AF12, PW3, Epulopiscium, and Oscillospira were significantly higher in the diseased P. spinosa, while the relative abundance of Serratia, Eubacteium, Citrobacter, and Morganella were significantly lower. Conclusion: Rotten-skin disease changed P. spinosa gut microbiota significantly; The relative abundance of Epulopiscium and Oscillospira might be related to the health conditions of the host skin and gallbladder; The relative abundance of Serratia and Eubacteium might be important for maintaining the gut microbiota ecosystem.


2020 ◽  
Vol 8 (4) ◽  
pp. 597
Author(s):  
Weizhong Dong ◽  
Ying Wang ◽  
Shuaixiong Liao ◽  
Minghang Lai ◽  
Li Peng ◽  
...  

Objective: The aims of this study are as follows: (1) to understand the relationship between gut microbiota and the choking phenomenon in diving athletes, and (2) to regulate the gut microbiota in diving athletes by drinking yogurt containing Bifidobacterium animalis subsp. lactis BB-12 and observe changes in the choking phenomenon in diving athletes. Methods: Experiment 1: A total of 20 diving athletes were tested in low- and high-pressure situations. Gut microbiota (n = 18) composition was then determined and differences in the gut microbiota composition among diving athletes who presented choking vs. no choking were identified. Experiment 2: A total of 16 divers who presented choking were divided into a high yogurt group (n = 6) and a low yogurt group (n = 10) for 15 days. Results: (1) The content of Veillonellaceae in divers who presented choking was significantly higher when compared to divers who did not present choking (p < 0.05). Bifidobacteriaceae (r = −0.52, p < 0.05) and Lactobacillaceae (r = −0.66, p < 0.05) were negatively correlated with the choking index. (2) During experiment 2, the average daily intake of the high yogurt group was 611.78 ± 94.94 mL and the average daily intake of the low yogurt group was 338 ± 71.45 mL and the abundance of Bifidobacteriaceae was significantly higher in the high yogurt group than in the low yogurt group. After the experiment, the choking index in the high yogurt group became significantly lower than that of the low yogurt group (z = −3.26, p < 0.001). Conclusion: The intake of yogurt containing B. animalis subsp. lactis can increase the abundance of Bifidobacteriaceae in elite diving athletes and their performance under high pressure. Hence, gut microbiota may affect the choking phenomenon in elite diving athletes.


2020 ◽  
Vol 8 (5) ◽  
pp. 753
Author(s):  
Ying Wang ◽  
Xiaoli Chen ◽  
Yun Yu ◽  
Yanqun Liu ◽  
Qing Zhang ◽  
...  

Infant temperament characteristics play a critical role in children’s developmental pathways and can predict adulthood psychopathology. The diversity and composition of the gut microbiota are associated with human temperament in both adults and young children. However, the relationship between the gut microbiota and temperament in 12-month-old infants is rarely studied; this developmental period is when temperament reaches a relatively stable stage. We used high-throughput sequencing methods to explore whether temperament characteristics were associated with gut microbiota diversity and composition. Infants’ fecal samples were collected at 12 months of age for the gut microbiota analysis. Based on the primary caregivers’ reports, infants’ temperaments were measured using the Infant Behavior Questionnaire-revised (IBQ-R). This study included 51 infants, including 20 boys and 31 girls, with a mean age of 12.25 months. Results showed that soothability was positively correlated with maternal education level (β = 0.29, p = 0.043, adjust p = 0.025) and the abundance of Bifidobacterium genera (β = 0.62, p = 0.004, adjust p = 0.002). Conversely, cuddliness was negatively correlated with the abundance of Hungatella genera. There was no significant difference in temperament based on gender. This study demonstrated that gut microbiota composition was associated with temperament in 12-month-old infants. These results point to the importance of gut microbiota balance. Future studies on the mechanisms behind the gut microbiota affecting temperament are warranted.


Sign in / Sign up

Export Citation Format

Share Document