scholarly journals Nanotechnology-Based Approaches for the Detection of SARS-CoV-2

2020 ◽  
Vol 2 ◽  
Author(s):  
Ritika Gupta ◽  
Poonam Sagar ◽  
Nitesh Priyadarshi ◽  
Sunaina Kaul ◽  
Rajat Sandhir ◽  
...  

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a pandemic has been validated as an extreme clinical calamity and has affected several socio-economic activities globally. Proven transmission of this virus occurs through airborne droplets from an infected person. The recent upsurge in the number of infected individuals has already exceeded the number of intensive care beds available to patients. These extraordinary circumstances have elicited the need for the development of diagnostic tools for the detection of the virus and, hence, prevent the spread of the disease. Early diagnosis and effective immediate treatment can reduce and prevent an increase in the number of cases. Conventional methods of detection such as quantitative real-time polymerase chain reaction and chest computed tomography scans have been used extensively for diagnostic purposes. However, these present several challenges, including prolonged assay requirements, labor-intensive testing, low sensitivity, and unavailability of these resources in remote locations. Such challenges urgently require fast, sensitive, and accurate diagnostic techniques for the timely detection and treatment of coronavirus disease 2019 (COVID-19) infections. Point-of-care biosensors that include paper- and chip-based diagnostic systems are rapid, cost-effective, and user friendly. In this article nanotechnology-based potential biosensors for SARS-CoV-2 diagnosis are discussed with particular emphasis on a lateral flow assay, a surface-enhanced Raman scattering-based biosensor, a localized surface plasmon resonance-based biosensor, Förster resonance energy transfer, an electrochemical biosensor, and artificial intelligence-based biosensors. Several biomolecules, such as nucleic acids, antibodies/enzymes, or aptamers, can serve as potential detection molecules on an appropriate platform, such as graphene oxide, nanoparticles, or quantum dots. An effective biosensor can be developed by using appropriate combinations of nanomaterials and technologies.

2017 ◽  
Author(s):  
Xuan Weng ◽  
Suresh Neethirajan

AbstractNoroviruses (NoV) are the leading cause of outbreak of acute gastroenteritis worldwide. A substantial effort has been made in the development of analytical devices for rapid and sensitive food safety monitoring via the detection of foodborne bacteria, viruses and parasites. Conventional analytical approaches for noroviruses suffer from some critical weaknesses: labor-intensive, time-consuming, and relatively low sensitivity. In this study, we developed a rapid and highly sensitive biosensor towards point-of-care device for noroviruses based on 6-carboxyfluorescein (6-FAM) labeled aptamer and nanomaterials, multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO). In an assay, the fluorescence of 6-FAM labeled aptamer was quenched by MWCNTs or GO via fluorescence resonance energy transfer (FRET). In the presence of norovirus, the fluorescence would be recovered due to the release of the 6-FAM labeled aptamer from MWCNTs or GO. An easy-to-make paper-based microfluidic platform made by nitrocellulose membrane was used to conduct the assay. The quantitative detection of norovirus virus-like particles (NoV VLPs) was successfully performed. A linear range of 0-12.9 μg/mL with a detection limit of 40 pM and 30 pM was achieved for the MWCNTs and GO based paper sensors, respectively. The results suggested the developed paper-based microfluidic device is simple, cost-effective and holds the potential of rapid in situ visual determination for noroviruses with remarkable sensitivity and specificity, which provides a new way for early identification of NoV and thereby an early intervention for preventing the spread of an outbreak.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1352
Author(s):  
Darius Riziki Martin ◽  
Nicole Remaliah Sibuyi ◽  
Phumuzile Dube ◽  
Adewale Oluwaseun Fadaka ◽  
Ruben Cloete ◽  
...  

The transmission of Tuberculosis (TB) is very rapid and the burden it places on health care systems is felt globally. The effective management and prevention of this disease requires that it is detected early. Current TB diagnostic approaches, such as the culture, sputum smear, skin tuberculin, and molecular tests are time-consuming, and some are unaffordable for low-income countries. Rapid tests for disease biomarker detection are mostly based on immunological assays that use antibodies which are costly to produce, have low sensitivity and stability. Aptamers can replace antibodies in these diagnostic tests for the development of new rapid tests that are more cost effective; more stable at high temperatures and therefore have a better shelf life; do not have batch-to-batch variations, and thus more consistently bind to a specific target with similar or higher specificity and selectivity and are therefore more reliable. Advancements in TB research, in particular the application of proteomics to identify TB specific biomarkers, led to the identification of a number of biomarker proteins, that can be used to develop aptamer-based diagnostic assays able to screen individuals at the point-of-care (POC) more efficiently in resource-limited settings.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pablo Rodríguez-Hernández ◽  
Vicente Rodríguez-Estévez ◽  
Lourdes Arce ◽  
Jaime Gómez-Laguna

Volatile organic compounds (VOCs) are small molecular mass metabolites which compose the volatilome, whose analysis has been widely employed in different areas. This innovative approach has emerged in research as a diagnostic alternative to different diseases in human and veterinary medicine, which still present constraints regarding analytical and diagnostic sensitivity. Such is the case of the infection by mycobacteria responsible for tuberculosis and paratuberculosis in livestock. Although eradication and control programs have been partly managed with success in many countries worldwide, the often low sensitivity of the current diagnostic techniques against Mycobacterium bovis (as well as other mycobacteria from Mycobacterium tuberculosis complex) and Mycobacterium avium subsp. paratuberculosis together with other hurdles such as low mycobacteria loads in samples, a tedious process of microbiological culture, inhibition by many variables, or intermittent shedding of the mycobacteria highlight the importance of evaluating new techniques that open different options and complement the diagnostic paradigm. In this sense, volatilome analysis stands as a potential option because it fulfills part of the mycobacterial diagnosis requirements. The aim of the present review is to compile the information related to the diagnosis of tuberculosis and paratuberculosis in livestock through the analysis of VOCs by using different biological matrices. The analytical techniques used for the evaluation of VOCs are discussed focusing on the advantages and drawbacks offered compared with the routine diagnostic tools. In addition, the differences described in the literature among in vivo and in vitro assays, natural and experimental infections, and the use of specific VOCs (targeted analysis) and complete VOC pattern (non-targeted analysis) are highlighted. This review emphasizes how this methodology could be useful in the problematic diagnosis of tuberculosis and paratuberculosis in livestock and poses challenges to be addressed in future research.


Micromachines ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Gorkem Memisoglu ◽  
Burhan Gulbahar ◽  
Joseba Zubia ◽  
Joel Villatoro

Förster resonance energy transfer (FRET) between two molecules in nanoscale distances is utilized in significant number of applications including biological and chemical applications, monitoring cellular activities, sensors, wireless communications and recently in nanoscale microfluidic radar design denoted by the vibrating FRET (VFRET) exploiting hybrid resonating graphene membrane and FRET design. In this article, a low hardware complexity and novel microfluidic viscosity monitoring system architecture is presented by exploiting VFRET in a novel microfluidic system design. The donor molecules in a microfluidic channel are acoustically vibrated resulting in VFRET in the case of nearby acceptor molecules detected with their periodic optical emission signals. VFRET does not require complicated hardware by directly utilizing molecular interactions detected with the conventional photodetectors. The proposed viscosity measurement system design is theoretically modeled and numerically simulated while the experimental challenges are discussed. It promises point-of-care and environmental monitoring applications including viscosity characterization of blood or polluted water.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Huiyan Tian ◽  
Changjing Yuan ◽  
Yu Liu ◽  
Zhi Li ◽  
Ke Xia ◽  
...  

Abstract MiRNA-150, a gene regulator that has been revealed to be abnormal expression in non-small cell lung cancer (NSCLC), can be regarded as a serum indicator for diagnosis and monitoring of NSCLC. Herein, a new sort of nanoprobe, termed allosteric spherical nanoprobe, was first developed to sense miRNA-150. Compared with conventional hairpin, this new nanoprobe possesses more enrichment capacity and reaction cross section. Structurally, it consists of magnetic nanoparticles and dual-hairpin. In the absence of miRNA-150, the spherical nanoprobes form hairpin structure through DNA self-assembly, which could promote the Förster resonance energy transfer (FRET) of fluorophore (FAM) and quencher (BHQ1) nearby. However, in the presence of target, the target-probe hybridization can open the hairpin and form the active “Y” structure which separated fluorophore and quencher to yield “signal on” fluorescence. In the manner of multipoint fluorescence detection, the target-bound allosteric spherical nanoprobe could provide high detection sensitivity with a linear range of 100 fM to 10 nM and a detection limit of 38 fM. More importantly, the proposed method can distinguish the expression of serum miRNA-150 among NSCLC patients and healthy people. Finally, we hoped that the potential bioanalytical application of this nanoprobe strategy will pave the way for point-of-care testing (POCT).


2019 ◽  
Vol 21 (1) ◽  
pp. 134 ◽  
Author(s):  
Wei Xu ◽  
Daniel Wang ◽  
Derek Li ◽  
Chung Chiun Liu

Detection of biomarkers has raised much interest recently due to the need for disease diagnosis and personalized medicine in future point-of-care systems. Among various biomarkers, antibodies are an important type of detection target due to their potential for indicating disease progression stage and the efficiency of therapeutic antibody drug treatment. In this review, electrochemical and optical detection of antibodies are discussed. Specifically, creating a non-label and reagent-free sensing platform and construction of an anti-fouling electrochemical surface for electrochemical detection are suggested. For optical transduction, a rapid and programmable platform for antibody detection using a DNA-based beacon is suggested as well as the use of bioluminescence resonance energy transfer (BRET) switch for low cost antibody detection. These sensing strategies have demonstrated their potential for resolving current challenges in antibody detection such as high selectivity, low operation cost, simple detection procedures, rapid detection, and low-fouling detection. This review provides a general update for recent developments in antibody detection strategies and potential solutions for future clinical point-of-care systems.


COSMOS ◽  
2010 ◽  
Vol 06 (02) ◽  
pp. 207-219
Author(s):  
LIHUA WANG ◽  
YANYAN WANG ◽  
JIE ZOU ◽  
BIN LIU ◽  
CHUNHAI FAN

Development of rapid, field-portable and cost-effective sensors with high sensitivity and selectivity is of great importance for biomedical diagnostics, food safety and environmental monitoring. Silica nanoparticles (SiNPs) have great potential in sensor application due to their biocompatibility, controllable surface modification, excellent chemical stability and high specific surface area. On the other hand, conjugated polyelectrolytes (CPEs) have been widely used in sensor design due to their efficient Förster resonance energy transfer (FRET) to dyes and unique interaction with biomolecules. In this contribution, we briefly summarize the recent development of silica-related NP-based assays that incorporate CPEs as the signal amplifier or reporter. The silica-related NPs are used for probe immobilization, target recognition and separation, while CPEs provide amplified fluorescence signals and high sensitivity. These assays have been proven efficient for the detection of DNA, proteins, and small molecules through specific biorecognition events, such as DNA hybridization, antibody–antigen recognition and target–aptamer binding.


Nanophotonics ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Gerardo A. Lopez ◽  
M.-Carmen Estevez ◽  
Maria Soler ◽  
Laura M. Lechuga

AbstractMotivated by the recent progress in the nanofabrication field and the increasing demand for cost-effective, portable, and easy-to-use point-of-care platforms, localized surface plasmon resonance (LSPR) biosensors have been subjected to a great scientific interest in the last few years. The progress observed in the research of this nanoplasmonic technology is remarkable not only from a nanostructure fabrication point of view but also in the complete development and integration of operative devices and their application. The potential benefits that LSPR biosensors can offer, such as sensor miniaturization, multiplexing opportunities, and enhanced performances, have quickly positioned them as an interesting candidate in the design of lab-on-a-chip (LOC) optical biosensor platforms. This review covers specifically the most significant achievements that occurred in recent years towards the integration of this technology in compact devices, with views of obtaining LOC devices. We also discuss the most relevant examples of the use of the nanoplasmonic biosensors for real bioanalytical and clinical applications from assay development and validation to the identification of the implications, requirements, and challenges to be surpassed to achieve fully operative devices.


2020 ◽  
Author(s):  
Huiyan Tian ◽  
Changjing Yuan ◽  
Yu Liu ◽  
Zhi Li ◽  
Ke Xia ◽  
...  

Abstract MiRNA-150, a gene regulator that has been revealed to be abnormal expression in non-small cell lung cancer ( NSCLC ), can be regarded as a serum indicator for diagnosis and monitoring of NSCLC . Herein, a new sort of nanoprobe, termed allosteric spherical nanoprobe, was first developed to sense miRNA-150. Compared with conventional hairpin, this new nanoprobe possesses more enrichment capacity and reaction cross section. Structurally, it consists of magnetic nanoparticles and dual-hairpin. In the absence of miRNA-150, the spherical nanoprobes form hairpin structure through DNA self-assembly, which could promote the Förster resonance energy transfer (FRET) of fluorophore (FAM) and quencher (BHQ1) nearby. However, in the presence of target, the target-probe hybridization can open the hairpin and form the active “Y” structure which separated fluorophore and quencher to yield a “signal on” fluorescence. In the manner of multipoint fluorescence detection , the target-bound allosteric spherical nanoprobe could provide a high detection sensitivity with a linear range of 100 fM to 10 nM and a detection limit of 38 fM. More importantly, the proposed method could distinguish the expression of serum miRNA-150 among NSCLC patients and healthy people. Finally, we hoped that the potential bioanalytical application of this nanoprobe strategy will pave the way for point-of-care testing (POCT).


Sign in / Sign up

Export Citation Format

Share Document