scholarly journals A Novel Clinical-Driven Design for Robotic Hand Rehabilitation: Combining Sensory Training, Effortless Setup, and Large Range of Motion in a Palmar Device

2021 ◽  
Vol 15 ◽  
Author(s):  
Raphael Rätz ◽  
François Conti ◽  
René M. Müri ◽  
Laura Marchal-Crespo

Neurorehabilitation research suggests that not only high training intensity, but also somatosensory information plays a fundamental role in the recovery of stroke patients. Yet, there is currently a lack of easy-to-use robotic solutions for sensorimotor hand rehabilitation. We addressed this shortcoming by developing a novel clinical-driven robotic hand rehabilitation device, which is capable of fine haptic rendering, and that supports physiological full flexion/extension of the fingers while offering an effortless setup. Our palmar design, based on a parallelogram coupled to a principal revolute joint, introduces the following novelties: (1) While allowing for an effortless installation of the user's hand, it offers large range of motion of the fingers (full extension to 180° flexion). (2) The kinematic design ensures that all fingers are supported through the full range of motion and that the little finger does not lose contact with the finger support in extension. (3) We took into consideration that a handle is usually comfortably grasped such that its longitudinal axis runs obliquely from the metacarpophalangeal joint of the index finger to the base of the hypothenar eminence. (4) The fingertip path was optimized to guarantee physiologically correct finger movements for a large variety of hand sizes. Moreover, the device possesses a high mechanical transparency, which was achieved using a backdrivable cable transmission. The transparency was further improved with the implementation of friction and gravity compensation. In a test with six healthy participants, the root mean square of the human-robot interaction force was found to remain as low as 1.37 N in a dynamic task. With its clinical-driven design and easy-to-use setup, our robotic device for hand sensorimotor rehabilitation has the potential for high clinical acceptance, applicability and effectiveness.

2007 ◽  
Vol 07 (02) ◽  
pp. 163-174 ◽  
Author(s):  
T. PYLIOS ◽  
DUNCAN E. T. SHEPHERD

The metacarpophalangeal (MCP) joint is crucial for hand function, but is frequently affected by arthritis, leading to pain and disability. This paper reviews the biomechanics of the normal and diseased joint in order to help consider the design of improved MCP joint replacement implants. The normal MCP joint enables a large range of motion in flexion/extension and abduction/adduction as well as a few degrees of rotation. A normal joint typically allows 90° flexion, with a grip strength of up to 672 N. The diseased joint has a reduced range of motion (typically 30° flexion) and reduced hand strength compared to the normal joint. Current MCP joint replacement implants generally try to recreate the range of motion of the normal joint; however, many designs are prone to fracture, as they are unable to withstand the conditions of the diseased joint. It may be beneficial for future implant designs to provide just a functional range of motion. Future designs of MCP joint replacement implants need to be more durable and last longer. Careful consideration of the diseased joint, rather than the normal joint, may help to better define the requirements for such implants.


Author(s):  
Emmanuel Osayande ◽  
Kayode P. Ayodele ◽  
Morenikeji A. Komolafe

<p class="0abstractCxSpFirst">This study developed a robotic orthosis capable of detecting the intention of a wearer to move their fingers, thereafter augmenting their muscle force. This was with the aim of producing a device that can be used in post-stroke hand rehabilitation. The design of the orthosis was based on an existing design, which was modified using BLENDER release 2.78 and printed with ABS plastic. An actuator was mounted at the rear end of the orthosis, to provide actuation to perform full range flexion and extension motion for digits. Force sensors were embedded at the fingertips of the orthosis to detect minute finger movements. For severe cases where stroke survivors are incapable of little finger movements, the study employed a brain-computer interface to detect the intent to move. The robotic orthosis achieved an accuracy of 64.1% and 62% in detecting unclench and clench activities respectively and actuating the orthosis digits in response. The results revealed that the design presented here can help provide effective hand rehabilitation. The study concluded that the design incorporated with BCI systems is capable of performing hand rehabilitation in a clinical setting as it obtains some level of accuracy in detecting patient intent to move and actuating in response. This design is low cost, and hence will lessen the economic burden for stroke survivors in a poor-resource country.</p><p class="0abstractCxSpLast"><strong> </strong></p>


2019 ◽  
pp. 121-131

Introduction: Breast cancer is the most common type of cancer among women in Brazil and in the worl. The surgical treatment procedure may cause severe morbidity in the upper limb homolateral to surgery, including the reduction of the range of motion, with consequent impairment of function. A physiotherapeutic approach has an important role in the recover range of motion and the functionality of these women, guaranteeing the occupational, domestestic, familiar and conjugated activities, and, in this way, also improving the quality of life. Objectives: To analyse chances in the shoulder's range of motion and the functional capacity of the upper limbs, promoted by the deep running procedure in women with late postoperative mastectomy. Methods: All the patients were submitted to an evaluation in the beginning and end of the treatment, including: goniometry of flexion, extension, abduction, adduction, internal and external rotation of the shoulder joint; and function capacity analysis in activities that involve the upper members by DASH questionnaire. The treatment protocol includes twelve sessions of deep running, realized twice a week, in deep pool, for 20-minute during six weeks. Results: Were submitted to treatment a total of 4 patients. Despite the improvement in the numerical values, statistically significant differences were not found on the range of movements and in the functional capacity of upper members before and after the deep running sessions in post-mastectomy women. Conclusion: Deep running had effects on the numerical values of range of movement and upper limb functionality in women in the late postoperative period of the mastectomy procedure, but without statistically significant differences.


2018 ◽  
Author(s):  
Claudia Nava ◽  
Patrizio Sale ◽  
Vittorio Leggero ◽  
Simona Ferrante ◽  
Cira Fundaro' ◽  
...  

BACKGROUND In recent years, different smartphone apps have been validated for joint goniometry, but none for goniometric assessment of gait after stroke. OBJECTIVE The aims of our work were to assess:1) to assess intra-rater reliability of an image-based goniometric app – DrGoniometer- in the measurement of the extension, flexion angles and range of motion of the knee during the hemiparetic gait of a stroke patient; (2) its validity comparing to the reference method (electrogoniometer) for flexion-extension excursion measurements; and the intra-rater agreement in the choice of the video frames. METHODS An left-hemiparetic inpatient following haemorrhagic stroke was filmed using the app while walking on a linear path. An electrogoniometer was fixed on the medial face of the affected knee in order to record the dynamic goniometry during gait. Twenty-one raters, blinded to measurements, were recruited to rate knee angle measurements from video acquired with DrGoniometer. Each rater repeated the same procedure twice, the second one at least one day after the first measure. RESULTS Results showed that flexion angle measurements are reliable (ICC95%=0.66, 0.34;0.85; SEM=4°), and adequately precise (CV=14%). Extension angles measurements demonstrated moderate reliability and higher degree of variation (ICC=0.51, 0.09;0.77; SEM 4°; CV=53%). ROM values were: ICC=0.23 (-0.21;0.60); CV=20%. Accuracy of DrGoniometer compared to the electrogoniometer was 7.3±4.7°. The selection of maximum extension frame revealed an accordance of 58% and 72% within a range of ±5 or ±10 frames, respectively; while the best flexion frame reported 86% of agreement for both range of 5 and 10 frames. CONCLUSIONS The results demonstrated moderate to good reliability concerning the maximum extension and flexion angles, while assessing ROM DrGoniometer showed poor intra-rater reliability. Flexion angle measurements seemed to be reliable according to ICC and SEM values and more precise with a limited dispersion of results DrGoniometer revealed a good accuracy in the measurement of range of motion. The agreement of the maximal extension frame was anyway adequate within 5 frames (59%) and noticeably increased within 10 frames (72%). In conclusion, DrGoniometer was found to be a valid and reliable method for assessing knee angles during hemiparetic gait. Further studies are necessary to investigate inter-rater reliability and confirm our results.


2021 ◽  
Vol 9 (1) ◽  
pp. 232596712097753
Author(s):  
Brian J. Kelly ◽  
Alan W. Reynolds ◽  
Patrick J. Schimoler ◽  
Alexander Kharlamov ◽  
Mark Carl Miller ◽  
...  

Background: Lesions of the long head of the biceps can be successfully treated with biceps tenotomy or tenodesis when surgical management is elected. The advantage of a tenodesis is that it prevents the potential development of a cosmetic deformity or cramping muscle pain. Proponents of a subpectoral tenodesis believe that “groove pain” may remain a problem after suprapectoral tenodesis as a result of persistent motion of the tendon within the bicipital groove. Purpose/Hypothesis: To evaluate the motion of the biceps tendon within the bicipital groove before and after a suprapectoral intra-articular tenodesis. The hypothesis was that there would be minimal to no motion of the biceps tendon within the bicipital groove after tenodesis. Study Design: Controlled laboratory study. Methods: Six fresh-frozen cadaveric arms were dissected to expose the long head of the biceps tendon as well as the bicipital groove. Inclinometers and fiducials (optical markers) were used to measure the motions of the scapula, forearm, and biceps tendon through a full range of shoulder and elbow motions. A suprapectoral biceps tenodesis was then performed, and the motions were repeated. The motion of the biceps tendon was quantified as a function of scapular or forearm motion in each plane, both before and after the tenodesis. Results: There was minimal motion of the native biceps tendon during elbow flexion and extension but significant motion during all planes of scapular motion before tenodesis, with the most motion occurring during shoulder flexion-extension (20.73 ± 8.21 mm). The motion of the biceps tendon after tenodesis was significantly reduced during every plane of scapular motion compared with the native state ( P < .01 in all planes of motion), with a maximum motion of only 1.57 mm. Conclusion: There was a statistically significant reduction in motion of the biceps tendon in all planes of scapular motion after the intra-articular biceps tenodesis. The motion of the biceps tendon within the bicipital groove was essentially eliminated after the suprapectoral biceps tenodesis. Clinical Relevance: This arthroscopic suprapectoral tenodesis technique can significantly reduce motion of the biceps tendon within the groove in this cadaveric study, possibly reducing the likelihood of groove pain in the clinical setting.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, there is no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foraminoplasty. Methods Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization; 500 N preload was imposed on the L4 superior endplate, and 10 N⋅m was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of the L4-L5 spine were recorded. Results The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 2/5 from the apex to the base. The disc stress of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 1/5 from the apex to the base. Conclusion In this study, the ROM and disc stress of L4/L5 were affected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from the ventral to the dorsal should be less than 3/5 of the S1 upper facet joint. It is not recommended to form from apex to base. Level of evidence Level IV


2021 ◽  
pp. 1-6
Author(s):  
Young Jin Jo ◽  
Young Kyun Kim

BACKGROUND: Dynamic knee valgus (DKV) is a known risk factor for acute and chronic knee injuries and is more frequently diagnosed in females. A real-time single-leg squat test (SLST) could screen for DKV to prevent injuries. OBJECTIVE: To compare the differences in lower extremity strength and range of motion (ROM) in female soccer athletes with and without DKV during an SLST. METHODS: Eighteen subjects with DKV (DKV group) and 18 subjects without DKV (control group) during a single-leg squat were included. Hip strength (flexion, extension, abduction, adduction, internal rotation, and external rotation) was measured with a hand-held dynamometer. Hip ROM (internal and external rotation), and ankle ROM (dorsiflexion with the knee flexed and extended) were measured. Independent t-test was used to compare the averages of the groups. RESULTS: There were significant differences in hip abduction to adduction strength ratio (DKV: 1.48 ± 0.3, control: 1.22 ± 0.26, p< 0.01) and ankle dorsiflexion with knee flexed (DKV: 17.22 ± 6.82, control: 21.22 ± 4.55, p< 0.05) and extended (DKV: 10.14 ± 4.23, control: 14.75 ± 3.40, p< 0.001) between the groups. CONCLUSION: The hip abduction to adduction strength ratio and gastrocnemius and soleus flexibility may be associated factors in dynamic knee valgus and therefore should be assessed and treated, if indicated, as a possible preventive measure in female athletes with this variation.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 288
Author(s):  
Adam Wolniakowski ◽  
Charalampos Valsamos ◽  
Kanstantsin Miatliuk ◽  
Vassilis Moulianitis ◽  
Nikos Aspragathos

The determination of the optimal position of a robotic task within a manipulator’s workspace is crucial for the manipulator to achieve high performance regarding selected aspects of its operation. In this paper, a method for determining the optimal task placement for a serial manipulator is presented, so that the required joint torques are minimized. The task considered comprises the exercise of a given force in a given direction along a 3D path followed by the end effector. Given that many such tasks are usually conducted by human workers and as such the utilized trajectories are quite complex to model, a Human Robot Interaction (HRI) approach was chosen to define the task, where the robot is taught the task trajectory by a human operator. Furthermore, the presented method considers the singular free paths of the manipulator’s end-effector motion in the configuration space. Simulation results are utilized to set up a physical execution of the task in the optimal derived position within a UR-3 manipulator’s workspace. For reference the task is also placed at an arbitrary “bad” location in order to validate the simulation results. Experimental results verify that the positioning of the task at the optimal location derived by the presented method allows for the task execution with minimum joint torques as opposed to the arbitrary position.


2004 ◽  
Vol 18 (3) ◽  
pp. 518-521
Author(s):  
Dwayne C. Massey ◽  
John Vincent ◽  
Mark Maneval ◽  
Melissa Moore ◽  
J. T. Johnson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document