scholarly journals Gray Matter Volume and Functional Connectivity in Hypochondriasis: A Magnetic Resonance Imaging and Support Vector Machine Analysis

2020 ◽  
Vol 14 ◽  
Author(s):  
Zhe Shen ◽  
Liang Yu ◽  
Zhiyong Zhao ◽  
Kangyu Jin ◽  
Fen Pan ◽  
...  

Objective: Patients with hypochondriasis hold unexplainable beliefs and a fear of having a lethal disease, with poor compliances and treatment response to psychotropic drugs. Although several studies have demonstrated that patients with hypochondriasis demonstrate abnormalities in brain structure and function, gray matter volume (GMV) and functional connectivity (FC) in hypochondriasis still remain unclear.Methods: The present study collected T1-weighted and resting-state functional magnetic resonance images from 21 hypochondriasis patients and 22 well-matched healthy controls (HCs). We first analyzed the difference in the GMV between the two groups. We then used the regions showing a difference in GMV between two groups as seeds to perform functional connectivity (FC) analysis. Finally, a support vector machine (SVM) was applied to the imaging data to distinguish hypochondriasis patients from HCs.Results: Compared with the HCs, the hypochondriasis group showed decreased GMV in the left precuneus, and increased GMV in the left medial frontal gyrus. FC analyses revealed decreased FC between the left medial frontal gyrus and cuneus, and between the left precuneus and cuneus. A combination of both GMV and FC in the left precuneus, medial frontal gyrus, and cuneus was able to discriminate the hypochondriasis patients from HCs with a sensitivity of 0.98, specificity of 0.93, and accuracy of 0.95.Conclusion: Our study suggests that smaller left precuneus volumes and decreased FC between the left precuneus and cuneus seem to play an important role of hypochondriasis. Future studies are needed to confirm whether this finding is generalizable to patients with hypochondriasis.

2021 ◽  
pp. 1-10
Author(s):  
Hidemasa Takao ◽  
Shiori Amemiya ◽  
Osamu Abe ◽  

Background: Scan acceleration techniques, such as parallel imaging, can reduce scan times, but reliability is essential to implement these techniques in neuroimaging. Objective: To evaluate the reproducibility of the longitudinal changes in brain morphology determined by longitudinal voxel-based morphometry (VBM) between non-accelerated and accelerated magnetic resonance images (MRI) in normal aging, mild cognitive impairment (MCI), and Alzheimer’s disease (AD). Methods: Using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2 database, comprising subjects who underwent non-accelerated and accelerated structural T1-weighted MRI at screening and at a 2-year follow-up on 3.0 T Philips scanners, we examined the reproducibility of longitudinal gray matter volume changes determined by longitudinal VBM processing between non-accelerated and accelerated imaging in 50 healthy elderly subjects, 54 MCI patients, and eight AD patients. Results: The intraclass correlation coefficient (ICC) maps differed among the three groups. The mean ICC was 0.72 overall (healthy elderly, 0.63; MCI, 0.75; AD, 0.63), and the ICC was good to excellent (0.6–1.0) for 81.4%of voxels (healthy elderly, 64.8%; MCI, 85.0%; AD, 65.0%). The differences in image quality (head motion) were not significant (Kruskal–Wallis test, p = 0.18) and the within-subject standard deviations of longitudinal gray matter volume changes were similar among the groups. Conclusion: The results indicate that the reproducibility of longitudinal gray matter volume changes determined by VBM between non-accelerated and accelerated MRI is good to excellent for many regions but may vary between diseases and regions.


2021 ◽  
Vol 15 (5) ◽  
pp. 455-460
Author(s):  
Stefan P. Gazdzinski ◽  
Aleksandra Mojkowska ◽  
Agata Gaździńska ◽  
Maria Gorycka ◽  
Piotr Zieliński ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Livia Asan ◽  
Claudia Falfán-Melgoza ◽  
Carlo A. Beretta ◽  
Markus Sack ◽  
Lei Zheng ◽  
...  

AbstractMagnetic resonance imaging (MRI) of the brain combined with voxel-based morphometry (VBM) revealed changes in gray matter volume (GMV) in various disorders. However, the cellular basis of GMV changes has remained largely unclear. We correlated changes in GMV with cellular metrics by imaging mice with MRI and two-photon in vivo microscopy at three time points within 12 weeks, taking advantage of age-dependent changes in brain structure. Imaging fluorescent cell nuclei allowed inferences on (i) physical tissue volume as determined from reference spaces outlined by nuclei, (ii) cell density, (iii) the extent of cell clustering, and (iv) the volume of cell nuclei. Our data indicate that physical tissue volume alterations only account for 13.0% of the variance in GMV change. However, when including comprehensive measurements of nucleus volume and cell density, 35.6% of the GMV variance could be explained, highlighting the influence of distinct cellular mechanisms on VBM results.


SLEEP ◽  
2019 ◽  
Vol 42 (12) ◽  
Author(s):  
Ambra Stefani ◽  
Thomas Mitterling ◽  
Anna Heidbreder ◽  
Ruth Steiger ◽  
Christian Kremser ◽  
...  

Abstract Study Objectives Integrated information on brain microstructural integrity and iron storage and its impact on the morphometric profile is not available in restless legs syndrome (RLS). We applied multimodal magnetic resonance imaging (MRI) including diffusion tensor imaging, the transverse relaxation rate (R2*), a marker for iron storage, as well as gray and white matter volume measures to characterize RLS-related MRI signal distribution patterns and to analyze their associations with clinical parameters. Methods Eighty-seven patients with RLS (mean age 51, range 20–72 years; disease duration, mean 13 years, range 1–46 years, of those untreated n = 30) and 87 healthy control subjects, individually matched for age and gender, were investigated with multimodal 3T MRI. Results Volume of the white matter compartment adjacent to the post- and precentral cortex and fractional anisotropy (FA) of the frontopontine tract were both significantly reduced in RLS compared to healthy controls, and these alterations were associated with disease duration (r = 0.25, p = 0.025 and r = 0.23, p = 0.037, respectively). Corresponding gray matter volume increases of the right primary motor cortex in RLS (p < 0.001) were negatively correlated with the right FA signal of the frontopontine tract (r = −0.22; p < 0.05). Iron content evaluated with R2* was reduced in the putamen as well as in temporal and occipital compartments of the RLS cohort compared to the control group (p < 0.01). Conclusions Multimodal MRI identified progressing white matter decline of key somatosensory circuits that may underlie the perception of sensory leg discomfort. Increases of gray matter volume of the premotor cortex are likely to be a consequence of functional neuronal reorganization.


2001 ◽  
Vol 7 (3) ◽  
pp. 312-322 ◽  
Author(s):  
ELIZABETH R. SOWELL ◽  
DEAN DELIS ◽  
JOAN STILES ◽  
TERRY L. JERNIGAN

Previous studies conducted by our group have provided evidence for age-related reductions in cortical thickness in dorsal frontal and parietal regions between childhood and adulthood, and gray matter volume increases of mesial temporal and anterior diencephalic structures. The purpose of this study was to describe neurobehavioral correlates of these brain maturational changes using morphometric analyses of brain magnetic resonance images (MRI) and two tests of cognitive abilities. Participants were 35 normal children roughly stratified by age (7 to 16 years) and sex (20 boys and 15 girls) and frontal and mesial temporal regions were anatomically defined in each subjects' MRI data. The California Verbal Learning Test–Children's Version and the Rey-Osterrieth Complex Figure test were used as measures of verbal and visuospatial memory and organizational abilities. Analyses designed to show regionally specific relationships between the brain and behavioral measures revealed interesting results. Specifically, frontal lobe gray matter thinning was more strongly predictive of delayed verbal memory functioning than was the mesial temporal lobe gray matter volume, and this relationship did not appear to be mediated by factors indexed in chronological age. Similar, but less regionally specific relationships were observed for measures of visuospatial memory abilities and frontal lobe maturation. Functional imaging studies in the literature consistently report activation in frontal regions in adults during retrieval tasks. The relationship between frontal lobe maturation and delayed recall observed here may be reflective of the children's development towards the more adult-like frontal lobe function revealed in the functional imaging studies. (JINS, 2001, 7, 312–322.)


Sign in / Sign up

Export Citation Format

Share Document