scholarly journals The Higher Parietal Cortical Thickness in Abstinent Methamphetamine Patients Is Correlated With Functional Connectivity and Age of First Usage

2021 ◽  
Vol 15 ◽  
Author(s):  
Ru Yang ◽  
Lei He ◽  
Zhixue Zhang ◽  
Wenming Zhou ◽  
Jun Liu

AimThis study aimed to explore the changes of cortical thickness in abstinent methamphetamine (MA) patients compared with healthy controls.Materials and MethodsThree-tesla structural and functional magnetic resonance imaging (MRI) was obtained from 38 abstinent methamphetamine-dependent (AMD) patients and 32 demographically equivalent healthy controls. The cortical thickness was assessed using FreeSurfer software. General linear model was used to get brain regions with significant different cortical thickness between groups (p < 0.05, Monte Carlo simulation corrected). The mean cortical thickness value and functional connectivity with all other brain regions was extracted from those significant regions. Moreover, correlation coefficients were calculated in the AMD group to assess the relations between the mean cortical thickness, functional connectivity and age when they first took MA and the duration of both MA use and abstinence.ResultsThe AMD group showed significant cortical thickness increase in one cluster located in the parietal cortex, including right posterior central gyrus, supramarginal gyrus, and superior parietal lobule. In addition, cortical thickness values of those regions were all significant and negatively correlated with the age when patients first used MA. The cortical thickness of right posterior gyrus were positively correlated with its functional connectivities with left middle frontal gyrus and both left and right medial orbitofrontal gyrus.ConclusionThe higher cortical thickness in the parietal cortex of the AMD group is in agreement with findings in related studies of increased glucose metabolism and gray matter volume. Importantly, the negative correlation between parietal cortical thickness and age of first MA suggested that adolescent brains are more vulnerable to MA’s neurotoxic effect.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Wenqing Xia ◽  
Shaohua Wang ◽  
Andrea M. Spaeth ◽  
Hengyi Rao ◽  
Pin Wang ◽  
...  

We aim to investigate whether decreased interhemispheric functional connectivity exists in patients with type 2 diabetes mellitus (T2DM) by using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, we sought to determine whether interhemispheric functional connectivity deficits associated with cognition and insulin resistance (IR) among T2DM patients. We compared the interhemispheric resting state functional connectivity of 32 T2DM patients and 30 healthy controls using rs-fMRI. Partial correlation coefficients were used to detect the relationship between rs-fMRI information and cognitive or clinical data. Compared with healthy controls, T2DM patients showed bidirectional alteration of functional connectivity in several brain regions. Functional connectivity values in the middle temporal gyrus (MTG) and in the superior frontal gyrus were inversely correlated with Trail Making Test-B score of patients. Notably, insulin resistance (log homeostasis model assessment-IR) negatively correlated with functional connectivity in the MTG of patients. In conclusion, T2DM patients exhibit abnormal interhemispheric functional connectivity in several default mode network regions, particularly in the MTG, and such alteration is associated with IR. Alterations in interhemispheric functional connectivity might contribute to cognitive dysfunction in T2DM patients.


Author(s):  
Katherine A Koenig ◽  
Se-Hong Oh ◽  
Melissa R Stasko ◽  
Elizabeth C Roth ◽  
H Gerry Taylor ◽  
...  

Abstract Down syndrome is the phenotypic consequence of trisomy 21, with clinical presentation including both neurodevelopmental and neurodegenerative components. Although the intellectual disability typically displayed by individuals with Down syndrome is generally global, it also involves disproportionate deficits in hippocampally-mediated cognitive processes. Hippocampal dysfunction may also relate to Alzheimer’s disease-type pathology, which can appear in as early as the first decade of life and becomes universal by age 40. Using 7-tesla MRI of the brain, we present an assessment of the structure and function of the hippocampus in 34 individuals with Down syndrome (mean age 24.5 years ± 6.5) and 27 age- and sex-matched typically developing healthy controls. In addition to increased whole-brain mean cortical thickness and lateral ventricle volumes (p < 1.0 × 10−4), individuals with Down syndrome showed selective volume reductions in bilateral hippocampal subfields CA1, dentate gyrus, and tail (p < 0.005). In the group with Down syndrome, bilateral hippocampi showed widespread reductions in the strength of functional connectivity, predominately to frontal regions (p < 0.02). Age was not related to hippocampal volumes or functional connectivity measures in either group, but both groups showed similar relationships of age to whole-brain volume measures (p < 0.05). Finally, we performed an exploratory analysis of a subgroup of individuals with Down syndrome with both imaging and neuropsychological assessments. This analysis indicated that measures of spatial memory were related to mean cortical thickness, total gray matter volume, and right hemisphere hippocampal subfield volumes (p < 0.02). This work provides a first demonstration of the usefulness of high-field MRI to detect subtle differences in structure and function of the hippocampus in individuals with Down syndrome, and suggests the potential for development of MRI-derived measures as surrogate markers of drug efficacy in pharmacological studies designed to investigate enhancement of cognitive function.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050047
Author(s):  
Lubin Wang ◽  
Xianbin Li ◽  
Yuyang Zhu ◽  
Bei Lin ◽  
Qijing Bo ◽  
...  

Past studies have consistently shown functional dysconnectivity of large-scale brain networks in schizophrenia. In this study, we aimed to further assess whether multivariate pattern analysis (MVPA) could yield a sensitive predictor of patient symptoms, as well as identify ultra-high risk (UHR) stage of schizophrenia from intrinsic functional connectivity of whole-brain networks. We first combined rank-based feature selection and support vector machine methods to distinguish between 43 schizophrenia patients and 52 healthy controls. The constructed classifier was then applied to examine functional connectivity profiles of 18 UHR individuals. The classifier indicated reliable relationship between MVPA measures and symptom severity, with higher classification accuracy in more severely affected schizophrenia patients. The UHR subjects had classification scores falling between those of healthy controls and patients, suggesting an intermediate level of functional brain abnormalities. Moreover, UHR individuals with schizophrenia-like connectivity profiles at baseline presented higher rate of conversion to full-blown illness in the follow-up visits. Spatial maps of discriminative brain regions implicated increases of functional connectivity in the default mode network, whereas decreases of functional connectivity in the cerebellum, thalamus and visual areas in schizophrenia. The findings may have potential utility in the early diagnosis and intervention of schizophrenia.


2020 ◽  
Vol 10 (7) ◽  
pp. 459 ◽  
Author(s):  
Gaoxia Wei ◽  
Ruoguang Si ◽  
Youfa Li ◽  
Ying Yao ◽  
Lizhen Chen ◽  
...  

Volition is described as a psychological construct with great emphasis on the sense of agency. During volitional behavior, an individual always presents a volitional quality, an intrapersonal trait for dealing with adverse circumstances, which determines the individual’s persistence of action toward their intentions or goals. Elite athletes are a group of experts with superior volitional quality and, thereby, could be regarded as the natural subject pool to investigate this mental trait. The purpose of this study was to examine brain morphometric characteristics associated with volitional quality by using magnetic resonance imaging (MRI) and the Scale of Volitional Quality. We recruited 16 national-level athletes engaged in short track speed skating and 18 healthy controls matched with age and gender. A comparison of a parcel-wise brain anatomical characteristics of the healthy controls with those of the elite athletes revealed three regions with significantly increased cortical thickness in the athlete group. These regions included the left precuneus, the left inferior parietal lobe, and the right superior frontal lobe, which are the core brain regions involved in the sense of agency. The mean cortical thickness of the left inferior parietal lobe was significantly correlated with the independence of volitional quality (a mental trait that characterizes one’s intendency to control his/her own behavior and make decisions by applying internal standards and/or objective criteria). These findings suggest that sports training is an ideal model for better understanding the neural mechanisms of volitional behavior in the human brain.


Brain ◽  
2019 ◽  
Vol 143 (1) ◽  
pp. 150-160 ◽  
Author(s):  
Kim A Meijer ◽  
Martijn D Steenwijk ◽  
Linda Douw ◽  
Menno M Schoonheim ◽  
Jeroen J G Geurts

Abstract An efficient network such as the human brain features a combination of global integration of information, driven by long-range connections, and local processing involving short-range connections. Whether these connections are equally damaged in multiple sclerosis is unknown, as is their relevance for cognitive impairment and brain function. Therefore, we cross-sectionally investigated the association between damage to short- and long-range connections with structural network efficiency, the functional connectome and cognition. From the Amsterdam multiple sclerosis cohort, 133 patients (age = 54.2 ± 9.6) with long-standing multiple sclerosis and 48 healthy controls (age = 50.8 ± 7.0) with neuropsychological testing and MRI were included. Structural connectivity was estimated from diffusion tensor images using probabilistic tractography (MRtrix 3.0) between pairs of brain regions. Structural connections were divided into short- (length < quartile 1) and long-range (length > quartile 3) connections, based on the mean distribution of tract lengths in healthy controls. To determine the severity of damage within these connections, (i) fractional anisotropy as a measure for integrity; (ii) total number of fibres; and (iii) percentage of tract affected by lesions were computed for each connecting tract and averaged for short- and long-range connections separately. To investigate the impact of damage in these connections for structural network efficiency, global efficiency was computed. Additionally, resting-state functional connectivity was computed between each pair of brain regions, after artefact removal with FMRIB’s ICA-based X-noiseifier. The functional connectivity similarity index was computed by correlating individual functional connectivity matrices with an average healthy control connectivity matrix. Our results showed that the structural network had a reduced efficiency and integrity in multiple sclerosis relative to healthy controls (both P < 0.05). The long-range connections showed the largest reduction in fractional anisotropy (z = −1.03, P < 0.001) and total number of fibres (z = −0.44, P < 0.01), whereas in the short-range connections only fractional anisotropy was affected (z = −0.34, P = 0.03). Long-range connections also demonstrated a higher percentage of tract affected by lesions than short-range connections, independent of tract length (P < 0.001). Damage to long-range connections was more strongly related to structural network efficiency and cognition (fractional anisotropy: r = 0.329 and r = 0.447. number of fibres r = 0.321 and r = 0.278. and percentage of lesions: r = −0.219; r = −0.426, respectively) than damage to short-range connections. Only damage to long-distance connections correlated with a more abnormal functional network (fractional anisotropy: r = 0.226). Our findings indicate that long-range connections are more severely affected by multiple sclerosis-specific damage than short-range connections. Moreover compared to short-range connections, damage to long-range connections better explains network efficiency and cognition.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Reema Shafi ◽  
Adrian P. Crawley ◽  
Maria Carmela Tartaglia ◽  
Charles H. Tator ◽  
Robin E. Green ◽  
...  

AbstractConcussions are associated with a range of cognitive, neuropsychological and behavioral sequelae that, at times, persist beyond typical recovery times and are referred to as postconcussion syndrome (PCS). There is growing support that concussion can disrupt network-based connectivity post-injury. To date, a significant knowledge gap remains regarding the sex-specific impact of concussion on resting state functional connectivity (rs-FC). The aims of this study were to (1) investigate the injury-based rs-FC differences across three large-scale neural networks and (2) explore the sex-specific impact of injury on network-based connectivity. MRI data was collected from a sample of 80 concussed participants who fulfilled the criteria for postconcussion syndrome and 31 control participants who did not have any history of concussion. Connectivity maps between network nodes and brain regions were used to assess connectivity using the Functional Connectivity (CONN) toolbox. Network based statistics showed that concussed participants were significantly different from healthy controls across both salience and fronto-parietal network nodes. More specifically, distinct subnetwork components were identified in the concussed sample, with hyperconnected frontal nodes and hypoconnected posterior nodes across both the salience and fronto-parietal networks, when compared to the healthy controls. Node-to-region analyses showed sex-specific differences across association cortices, however, driven by distinct networks. Sex-specific network-based alterations in rs-FC post concussion need to be examined to better understand the underlying mechanisms and associations to clinical outcomes.


2018 ◽  
Vol 29 (7) ◽  
pp. 2915-2923 ◽  
Author(s):  
Emily M Johnson ◽  
Alexandra D Ishak ◽  
Paige E Naylor ◽  
David A Stevenson ◽  
Allan L Reiss ◽  
...  

Abstract The Ras-MAPK pathway has an established role in neural development and synaptic signaling. Mutations in this pathway are associated with a collection of neurodevelopmental syndromes, Rasopathies; among these, Noonan syndrome (NS) is the most common (1:2000). Prior research has focused on identifying genetic mutations and cellular mechanisms of the disorder, however, effects of NS on the human brain remain unknown. Here, imaging and cognitive data were collected from 12 children with PTPN11-related NS, ages 4.0–11.0 years (8.98 ± 2.33) and 12 age- and sex-matched typically developing controls (8.79 ± 2.17). We observe reduced gray matter volume in bilateral corpus striatum (Cohen’s d = −1.0:−1.3), reduced surface area in temporal regions (d = −1.8:−2.2), increased cortical thickness in frontal regions (d = 1.2–1.3), and reduced cortical thickness in limbic regions (d = −1.6), including limbic structures integral to the circuitry of the hippocampus. Further, we find high levels of inattention, hyperactivity, and memory deficits in children with NS. Taken together, these results identify effects of NS on specific brain regions associated with ADHD and learning in children. While our research lays the groundwork for elucidating the neural and behavioral mechanisms of NS, it also adds an essential tier to understanding the Ras-MAPK pathway’s role in human brain development.


Cephalalgia ◽  
2015 ◽  
Vol 36 (6) ◽  
pp. 526-533 ◽  
Author(s):  
Catherine D Chong ◽  
Amaal J Starling ◽  
Todd J Schwedt

Background Migraine attacks manifest with hypersensitivities to light, sound, touch and odor. Some people with migraine have photosensitivity between migraine attacks, suggesting persistent alterations in the integrity of brain regions that process light. Although functional neuroimaging studies have shown visual stimulus induced “hyperactivation” of visual cortex regions in migraineurs between attacks, whether photosensitivity is associated with alterations in brain structure is unknown. Methods Levels of photosensitivity were evaluated using the Photosensitivity Assessment Questionnaire in 48 interictal migraineurs and 48 healthy controls. Vertex-by-vertex measurements of cortical thickness were assessed in 28 people with episodic migraine who had interictal photosensitivity (mean age = 35.0 years, SD = 12.1) and 20 episodic migraine patients without symptoms of interictal photosensitivity (mean age = 36.0 years, SD = 11.4) using a general linear model design. Results Migraineurs have greater levels of interictal photosensitivity relative to healthy controls. Relative to migraineurs without interictal photosensitivity, migraineurs with interictal photosensitivity have thicker cortex in several brain areas including the right lingual, isthmus cingulate and pericalcarine regions, and the left precentral, postcentral and supramarginal regions. Conclusion Episodic migraineurs with interictal photosensitivity have greater cortical thickness in the right parietal-occipital and left fronto-parietal regions, suggesting that persistent light sensitivity is associated with underlying structural alterations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maya J. L. Schutte ◽  
Marc M. Bohlken ◽  
Guusje Collin ◽  
Lucija Abramovic ◽  
Marco P. M. Boks ◽  
...  

AbstractHallucinations may arise from an imbalance between sensory and higher cognitive brain regions, reflected by alterations in functional connectivity. It is unknown whether hallucinations across the psychosis continuum exhibit similar alterations in functional connectivity, suggesting a common neural mechanism, or whether different mechanisms link to hallucinations across phenotypes. We acquired resting-state functional MRI scans of 483 participants, including 40 non-clinical individuals with hallucinations, 99 schizophrenia patients with hallucinations, 74 bipolar-I disorder patients with hallucinations, 42 bipolar-I disorder patients without hallucinations, and 228 healthy controls. The weighted connectivity matrices were compared using network-based statistics. Non-clinical individuals with hallucinations and schizophrenia patients with hallucinations exhibited increased connectivity, mainly among fronto-temporal and fronto-insula/cingulate areas compared to controls (P < 0.001 adjusted). Differential effects were observed for bipolar-I disorder patients with hallucinations versus controls, mainly characterized by decreased connectivity between fronto-temporal and fronto-striatal areas (P = 0.012 adjusted). No connectivity alterations were found between bipolar-I disorder patients without hallucinations and controls. Our results support the notion that hallucinations in non-clinical individuals and schizophrenia patients are related to altered interactions between sensory and higher-order cognitive brain regions. However, a different dysconnectivity pattern was observed for bipolar-I disorder patients with hallucinations, which implies a different neural mechanism across the psychosis continuum.


Sign in / Sign up

Export Citation Format

Share Document