scholarly journals Aberrant Brain Network Integration and Segregation in Diabetic Peripheral Neuropathy Revealed by Structural Connectomics

2020 ◽  
Vol 14 ◽  
Author(s):  
Fangxue Yang ◽  
Minli Qu ◽  
Youming Zhang ◽  
Linmei Zhao ◽  
Wu Xing ◽  
...  

Diabetic peripheral neuropathy (DPN) is one of the most common forms of peripheral neuropathy, and its incidence has been increasing. Mounting evidence has shown that patients with DPN have been associated with widespread alterations in the structure, function and connectivity of the brain, suggesting possible alterations in large-scale brain networks. Using structural covariance networks as well as advanced graph-theory-based computational approaches, we investigated the topological abnormalities of large-scale brain networks for a relatively large sample of patients with DPN (N = 67) compared to matched healthy controls (HCs; N = 88). Compared with HCs, the structural covariance networks of patients with DPN showed an increased characteristic path length, clustering coefficient, sigma, transitivity, and modularity, suggestive of inefficient global integration and increased local segregation. These findings may improve our understanding of the pathophysiological mechanisms underlying alterations in the central nervous system of patients with DPN from the perspective of large-scale structural brain networks.

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 939
Author(s):  
Rui Cao ◽  
Huiyu Shi ◽  
Xin Wang ◽  
Shoujun Huo ◽  
Yan Hao ◽  
...  

Despite many studies reporting hemispheric asymmetry in the representation and processing of emotions, the essence of the asymmetry remains controversial. Brain network analysis based on electroencephalography (EEG) is a useful biological method to study brain function. Here, EEG data were recorded while participants watched different emotional videos. According to the videos’ emotional categories, the data were divided into four categories: high arousal high valence (HAHV), low arousal high valence (LAHV), low arousal low valence (LALV) and high arousal low valence (HALV). The phase lag index as a connectivity index was calculated in theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma (31–45 Hz) bands. Hemispheric networks were constructed for each trial, and graph theory was applied to quantify the hemispheric networks’ topological properties. Statistical analyses showed significant topological differences in the gamma band. The left hemispheric network showed significantly higher clustering coefficient (Cp), global efficiency (Eg) and local efficiency (Eloc) and lower characteristic path length (Lp) under HAHV emotion. The right hemispheric network showed significantly higher Cp and Eloc and lower Lp under HALV emotion. The results showed that the left hemisphere was dominant for HAHV emotion, while the right hemisphere was dominant for HALV emotion. The research revealed the relationship between emotion and hemispheric asymmetry from the perspective of brain networks.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Du Lei ◽  
Jun Ma ◽  
Jilei Zhang ◽  
Mengxing Wang ◽  
Kaihua Zhang ◽  
...  

Primary monosymptomatic nocturnal enuresis (PMNE) is a common developmental disorder in children. Previous literature has suggested that PMNE not only is a micturition disorder but also is characterized by cerebral structure abnormalities and dysfunction. However, the biological mechanisms underlying the disease are not thoroughly understood. Graph theoretical analysis has provided a unique tool to reveal the intrinsic attributes of the connectivity patterns of a complex network from a global perspective. Resting-state fMRI was performed in 20 children with PMNE and 20 healthy controls. Brain networks were constructed by computing Pearson’s correlations for blood oxygenation level-dependent temporal fluctuations among the 2 groups, followed by graph-based network analyses. The functional brain networks in the PMNE patients were characterized by a significantly lower clustering coefficient, global and local efficiency, and higher characteristic path length compared with controls. PMNE patients also showed a reduced nodal efficiency in the bilateral calcarine sulcus, bilateral cuneus, bilateral lingual gyri, and right superior temporal gyrus. Our findings suggest that PMNE includes brain network alterations that may affect global communication and integration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Büchel Daniel ◽  
Lehmann Tim ◽  
Sandbakk Øyvind ◽  
Baumeister Jochen

AbstractThe interaction of acute exercise and the central nervous system evokes increasing interest in interdisciplinary research fields of neuroscience. Novel approaches allow to monitor large-scale brain networks from mobile electroencephalography (EEG) applying graph theory, but it is yet uncertain whether brain graphs extracted after exercise are reliable. We therefore aimed to investigate brain graph reliability extracted from resting state EEG data before and after submaximal exercise twice within one week in male participants. To obtain graph measures, we extracted global small-world-index (SWI), clustering coefficient (CC) and characteristic path length (PL) based on weighted phase leg index (wPLI) and spectral coherence (Coh) calculation. For reliability analysis, Intraclass-Correlation-Coefficient (ICC) and Coefficient of Variation (CoV) were computed for graph measures before (REST) and after POST) exercise. Overall results revealed poor to excellent measures at PRE and good to excellent ICCs at POST in the theta, alpha-1 and alpha-2, beta-1 and beta-2 frequency band. Based on bootstrap-analysis, a positive effect of exercise on reliability of wPLI based measures was observed, while exercise induced a negative effect on reliability of Coh-based graph measures. Findings indicate that brain graphs are a reliable tool to analyze brain networks in exercise contexts, which might be related to the neuroregulating effect of exercise inducing functional connections within the connectome. Relative and absolute reliability demonstrated good to excellent reliability after exercise. Chosen graph measures may not only allow analysis of acute, but also longitudinal studies in exercise-scientific contexts.


Author(s):  
Salvatore Nigro ◽  
Benedetta Tafuri ◽  
Daniele Urso ◽  
Roberto De Blasi ◽  
Alessia Cedola ◽  
...  

AbstractSemantic (svPPA) and nonfluent (nfvPPA) variants of primary progressive aphasia (PPA) have recently been associated with distinct patterns of white matter and functional network alterations in left frontoinsular and anterior temporal regions, respectively. Little information exists, however, about the topological characteristics of gray matter covariance networks in these two PPA variants. In the present study, we used a graph theory approach to describe the structural covariance network organization in 34 patients with svPPA, 34 patients with nfvPPA and 110 healthy controls. All participants underwent a 3 T structural MRI. Next, we used cortical thickness values and subcortical volumes to define subject-specific connectivity networks. Patients with svPPA and nfvPPA were characterized by higher values of normalized characteristic path length compared with controls. Moreover, svPPA patients had lower values of normalized clustering coefficient relative to healthy controls. At a regional level, patients with svPPA showed a reduced connectivity and impaired information processing in temporal and limbic brain areas relative to controls and nfvPPA patients. By contrast, local network changes in patients with nfvPPA were focused on frontal brain regions such as the pars opercularis and the middle frontal cortex. Of note, a predominance of local metric changes was observed in the left hemisphere in both nfvPPA and svPPA brain networks. Taken together, these findings provide new evidences of a suboptimal topological organization of the structural covariance networks in svPPA and nfvPPA patients. Moreover, we further confirm that distinct patterns of structural network alterations are related to neurodegenerative mechanisms underlying each PPA variant.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rieke Fruengel ◽  
Timo Bröhl ◽  
Thorsten Rings ◽  
Klaus Lehnertz

AbstractPrevious research has indicated that temporal changes of centrality of specific nodes in human evolving large-scale epileptic brain networks carry information predictive of impending seizures. Centrality is a fundamental network-theoretical concept that allows one to assess the role a node plays in a network. This concept allows for various interpretations, which is reflected in a number of centrality indices. Here we aim to achieve a more general understanding of local and global network reconfigurations during the pre-seizure period as indicated by changes of different node centrality indices. To this end, we investigate—in a time-resolved manner—evolving large-scale epileptic brain networks that we derived from multi-day, multi-electrode intracranial electroencephalograpic recordings from a large but inhomogeneous group of subjects with pharmacoresistant epilepsies with different anatomical origins. We estimate multiple centrality indices to assess the various roles the nodes play while the networks transit from the seizure-free to the pre-seizure period. Our findings allow us to formulate several major scenarios for the reconfiguration of an evolving epileptic brain network prior to seizures, which indicate that there is likely not a single network mechanism underlying seizure generation. Rather, local and global aspects of the pre-seizure network reconfiguration affect virtually all network constituents, from the various brain regions to the functional connections between them.


2021 ◽  
pp. 1-11
Author(s):  
Yi Liu ◽  
Zhuoyuan Li ◽  
Xueyan Jiang ◽  
Wenying Du ◽  
Xiaoqi Wang ◽  
...  

Background: Evidence suggests that subjective cognitive decline (SCD) individuals with worry have a higher risk of cognitive decline. However, how SCD-related worry influences the functional brain network is still unknown. Objective: In this study, we aimed to explore the differences in functional brain networks between SCD subjects with and without worry. Methods: A total of 228 participants were enrolled from the Sino Longitudinal Study on Cognitive Decline (SILCODE), including 39 normal control (NC) subjects, 117 SCD subjects with worry, and 72 SCD subjects without worry. All subjects completed neuropsychological assessments, APOE genotyping, and resting-state functional magnetic resonance imaging (rs-fMRI). Graph theory was applied for functional brain network analysis based on both the whole brain and default mode network (DMN). Parameters including the clustering coefficient, shortest path length, local efficiency, and global efficiency were calculated. Two-sample T-tests and chi-square tests were used to analyze differences between two groups. In addition, a false discovery rate-corrected post hoc test was applied. Results: Our analysis showed that compared to the SCD without worry group, SCD with worry group had significantly increased functional connectivity and shortest path length (p = 0.002) and a decreased clustering coefficient (p = 0.013), global efficiency (p = 0.001), and local efficiency (p <  0.001). The above results appeared in both the whole brain and DMN. Conclusion: There were significant differences in functional brain networks between SCD individuals with and without worry. We speculated that worry might result in alterations of the functional brain network for SCD individuals and then result in a higher risk of cognitive decline.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yi Liang ◽  
Chunli Chen ◽  
Fali Li ◽  
Dezhong Yao ◽  
Peng Xu ◽  
...  

Epileptic seizures are considered to be a brain network dysfunction, and chronic recurrent seizures can cause severe brain damage. However, the functional brain network underlying recurrent epileptic seizures is still left unveiled. This study is aimed at exploring the differences in a related brain activity before and after chronic repetitive seizures by investigating the power spectral density (PSD), fuzzy entropy, and functional connectivity in epileptic patients. The PSD analysis revealed differences between the two states at local area, showing postseizure energy accumulation. Besides, the fuzzy entropies of preseizure in the frontal, central, and temporal regions are higher than that of postseizure. Additionally, attenuated long-range connectivity and enhanced local connectivity were also found. Moreover, significant correlations were found between network metrics (i.e., characteristic path length and clustering coefficient) and individual seizure number. The PSD, fuzzy entropy, and network analysis may indicate that the brain is gradually impaired along with the occurrence of epilepsy, and the accumulated effect of brain impairment is observed in individuals with consecutive epileptic bursts. The findings of this study may provide helpful insights into understanding the network mechanism underlying chronic recurrent epilepsy.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 300 ◽  
Author(s):  
Shuaizong Si ◽  
Bin Wang ◽  
Xiao Liu ◽  
Chong Yu ◽  
Chao Ding ◽  
...  

Alzheimer’s disease (AD) is a progressive disease that causes problems of cognitive and memory functions decline. Patients with AD usually lose their ability to manage their daily life. Exploring the progression of the brain from normal controls (NC) to AD is an essential part of human research. Although connection changes have been found in the progression, the connection mechanism that drives these changes remains incompletely understood. The purpose of this study is to explore the connection changes in brain networks in the process from NC to AD, and uncovers the underlying connection mechanism that shapes the topologies of AD brain networks. In particular, we propose a mutual information brain network model (MINM) from the perspective of graph theory to achieve our aim. MINM concerns the question of estimating the connection probability between two cortical regions with the consideration of both the mutual information of their observed network topologies and their Euclidean distance in anatomical space. In addition, MINM considers establishing and deleting connections, simultaneously, during the networks modeling from the stage of NC to AD. Experiments show that MINM is sufficient to capture an impressive range of topological properties of real brain networks such as characteristic path length, network efficiency, and transitivity, and it also provides an excellent fit to the real brain networks in degree distribution compared to experiential models. Thus, we anticipate that MINM may explain the connection mechanism for the formation of the brain network organization in AD patients.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aurélie Bochet ◽  
Holger Franz Sperdin ◽  
Tonia Anahi Rihs ◽  
Nada Kojovic ◽  
Martina Franchini ◽  
...  

AbstractAutism spectrum disorders (ASD) are associated with disruption of large-scale brain network. Recently, we found that directed functional connectivity alterations of social brain networks are a core component of atypical brain development at early developmental stages in ASD. Here, we investigated the spatio-temporal dynamics of whole-brain neuronal networks at a subsecond scale in 113 toddlers and preschoolers (66 with ASD) using an EEG microstate approach. We first determined the predominant microstates using established clustering methods. We identified five predominant microstate (labeled as microstate classes A–E) with significant differences in the temporal dynamics of microstate class B between the groups in terms of increased appearance and prolonged duration. Using Markov chains, we found differences in the dynamic syntax between several maps in toddlers and preschoolers with ASD compared to their TD peers. Finally, exploratory analysis of brain–behavioral relationships within the ASD group suggested that the temporal dynamics of some maps were related to conditions comorbid to ASD during early developmental stages.


2020 ◽  
Vol 30 (10) ◽  
pp. 2050051
Author(s):  
Feng Fang ◽  
Thomas Potter ◽  
Thinh Nguyen ◽  
Yingchun Zhang

Emotion and affect play crucial roles in human life that can be disrupted by diseases. Functional brain networks need to dynamically reorganize within short time periods in order to efficiently process and respond to affective stimuli. Documenting these large-scale spatiotemporal dynamics on the same timescale they arise, however, presents a large technical challenge. In this study, the dynamic reorganization of the cortical functional brain network during an affective processing and emotion regulation task is documented using an advanced multi-model electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) technique. Sliding time window correlation and [Formula: see text]-means clustering are employed to explore the functional brain connectivity (FC) dynamics during the unaltered perception of neutral (moderate valence, low arousal) and negative (low valence, high arousal) stimuli and cognitive reappraisal of negative stimuli. Betweenness centralities are computed to identify central hubs within each complex network. Results from 20 healthy subjects indicate that the cortical mechanism for cognitive reappraisal follows a ‘top-down’ pattern that occurs across four brain network states that arise at different time instants (0–170[Formula: see text]ms, 170–370[Formula: see text]ms, 380–620[Formula: see text]ms, and 620–1000[Formula: see text]ms). Specifically, the dorsolateral prefrontal cortex (DLPFC) is identified as a central hub to promote the connectivity structures of various affective states and consequent regulatory efforts. This finding advances our current understanding of the cortical response networks of reappraisal-based emotion regulation by documenting the recruitment process of four functional brain sub-networks, each seemingly associated with different cognitive processes, and reveals the dynamic reorganization of functional brain networks during emotion regulation.


Sign in / Sign up

Export Citation Format

Share Document