scholarly journals Regulatory Effects of Acupuncture on Emotional Disorders in Patients With Menstrual Migraine Without Aura: A Resting-State fMRI Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Yutong Zhang ◽  
Ziwen Wang ◽  
Jiarong Du ◽  
Jixin Liu ◽  
Tao Xu ◽  
...  

Background: Menstrual migraine without aura (MMoA) refers to a specific type of migraine that is associated with the female ovarian cycle. It is particularly serious and has brought huge life pressure and mental burden to female patients. Acupuncture has been commonly used to prevent migraines and relieve concomitant emotional disorders; however, the physiological mechanism underlying this intervention remains unclear. This study aimed to use resting-state functional magnetic resonance imaging (rsfMRI) to investigate whether acupuncture can modulate brain function and if the potential influence on brain activity correlates with improving emotional symptoms in MMoA patients.Methods: Overall, 44 patients were randomly divided into a true acupuncture (TA) group and the sham acupuncture (SA) group. Patients underwent rsfMRI before and after 3-month treatment, the amplitude of low-frequency fuctuations (ALFF) and regional homogeneity (ReHo) in rsfMRI were calculated. Zung self-rating anxiety scale (SAS), Zung self-rating depression scale (SDS), frequency of migraine attacks, visual analog scale, and intensity of the migraine were used for evaluate the clinical effect. The clinical changes of variables were also used to further assess the correlation with brain activity in MMoA patients.Results: After acupuncture treatment, the emotional symptoms of both groups of patients improved, and the clinical symptoms of migraine were alleviated. The major finding of our study was that patients with MMoA showed lower ALFF value in the left anterior cingulate and the value was positively correlated with the decreases in the SAS and SDS scores. In the SA group, common brain regions responded both in ALFF and regional homogeneity values mainly in the insula, and no significant correlations were observed between brain regions and clinical variables.Conclusions: These results indicated that both two acupuncture treatments were helpful in treating migraine and could improve emotion symptoms. TA had a relatively better effect in reducing the frequency of migraine attack than SA. The two therapies have different modulation effects as TA regulates emotional disorders by modulating the frontal-limbic regions, and SA may modulate pain perception through the placebo effect on insula and by indirectly regulating emotional disorders. These findings provided evidence that acupuncture is a complementary and alternative therapy to relieve clinical symptoms in female patients with migraines and could help enhance clinical diagnosis and treatment.Clinical Trial Registration: [http://www.chictr.org.cn/index.aspx], identifier [ChiCTR-IOR-15006648. Registered 23 June 2015].

2021 ◽  
pp. 1-29
Author(s):  
Kangyu Jin ◽  
Zhe Shen ◽  
Guoxun Feng ◽  
Zhiyong Zhao ◽  
Jing Lu ◽  
...  

Abstract Objective: A few former studies suggested there are partial overlaps in abnormal brain structure and cognitive function between Hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. Methods: 21 HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent Resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. Results: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL) and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG and left paracentral lobule but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MCCB in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. Conclusion: our results suggested the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Jian Guo ◽  
Ning Chen ◽  
Muke Zhou ◽  
Pian Wang ◽  
Li He

Background: Transient ischemic attack (TIA) can increase the risk of some neurologic dysfunctions, of which the mechanism remains unclear. Resting-state functional MRI (rfMRI) is suggested to be a valuable tool to study the relation between spontaneous brain activity and behavioral performance. However, little is known about whether the local synchronization of spontaneous neural activity is altered in TIA patients. The purpose of this study is to detect differences in regional spontaneous activities throughout the whole brain between TIAs and normal controls. Methods: Twenty one TIA patients suffered an ischemic event in the right hemisphere and 21 healthy volunteers were enrolled in the study. All subjects were investigated using cognitive tests and rfMRI. The regional homogeneity (ReHo) was calculate and compared between two groups. Then a correlation analysis was performed to explore the relationship between ReHo values of brain regions showing abnormal resting-state properties and clinical variables in TIA group. Results: Compared with controls, TIA patients exhibited decreased ReHo in right dorsolateral prefrontal cortex (DLPFC), right inferior prefrontal gyrus, right ventral anterior cingulate cortex and right dorsal posterior cingular cortex. Moreover, the mean ReHo in right DLPFC and right inferior prefrontal gyrus were significantly correlated with MoCA in TIA patients. Conclusions: Neural activity in the resting state is changed in patients with TIA. The positive correlation between regional homogeneity of rfMRI and cognition suggests that ReHo may be a promising tool to better our understanding of the neurobiological consequences of TIA.


2017 ◽  
Vol 2 (20;2) ◽  
pp. E303-E314 ◽  
Author(s):  
Buwei Yu

Background: Postherpetic neuralgia (PHN) patients suffer debilitating chronic pain, hyperalgesia, and allodynia, as well as emotional disorders such as insomnia, anxiety, and depression. The brain structure and functional basis of PHN are still not fully understood. Objectives: To identify the changes of regional brain activity in resting-state PHN patients using regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) methods. Correlations between spontaneous pain intensity and ReHo or fALFF were analyzed. Study Design: Observational study. Setting: University hospital. Methods: ReHo, fALFF change was analyzed in 19 PHN patients and 19 healthy controls to detect the functional abnormality in the brains of PHN patients. Correlations between ReHo, fALFF, and PHN pain intensity were assessed in the PHN group. Results: PHN patients exhibited significantly abnormal ReHo and fALFF intensity in several brain regions, including the brainstem, thalamus, limbic system, temporal lobe, prefrontal lobe, and cerebellum compared with healthy controls. Correlation analysis showed that most of the ReHo values of the aforementioned brain regions positively correlated with visual analog scale (VAS) values. But much less correlation was found between fALFF and VAS. Limitations: (a) No specific emotional assessment was given for PHN patients before fMRI scans, therefore we cannot exclude whether the emotional disorders exist in these patients. (b) Relatively short pain duration (mean 5.4 months) and small sample size (n = 19) for the PHN group. Conclusions: For PHN patients, the local brain activity abnormality was not restricted to the pain matrix. Besides regions related to pain perception, areas in charge of affective processes, emotional activity, and pain modulation also showed abnormal local brain activity in a resting state, which may suggest complicated supraspinal function and plasticity change in PHN patients. ReHo was more closely correlated with pain intensity of PHN patients than fALFF. This work indicates that besides physical and emotional pain perception, mood disorder and pain modulation could be characteristics of PHN patients. This also supports the potential use of therapeutic interventions not only restricted to pain alleviation, but also those that attempt to ameliorate the cognitive and emotional comorbidities. Key words: Postherpetic neuralgia, resting-state fMRI (rs-fMRI), mood disorder, limbic sy


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


Author(s):  
Andrea Duggento ◽  
Marta Bianciardi ◽  
Luca Passamonti ◽  
Lawrence L. Wald ◽  
Maria Guerrisi ◽  
...  

The causal, directed interactions between brain regions at rest (brain–brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain–heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain–brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain–brain and brain–heart interactions reflecting central modulation of ANS outflow.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria Seidel ◽  
Daniel Geisler ◽  
Viola Borchardt ◽  
Joseph A. King ◽  
Fabio Bernardoni ◽  
...  

AbstractWhereas research using structural magnetic resonance imaging (sMRI) reports sizable grey matter reductions in patients suffering from acute anorexia nervosa (AN) to be largely reversible already after short-term weight gain, many task-based and resting-state functional connectivity (RSFC) studies suggest persistent brain alterations even after long-term weight rehabilitation. First investigations into spontaneous regional brain activity using voxel-wise resting-state measures found widespread abnormalities in acute AN, but no studies have compared intrinsic brain activity properties in weight-recovered individuals with a history of AN (recAN) with healthy controls (HCs). SMRI and RSFC data were analysed from a sample of 130 female volunteers: 65 recAN and 65 pairwise age-matched HC. Cortical grey matter thickness was assessed using FreeSurfer software. Fractional amplitude of low-frequency fluctuations (fALFFs), mean-square successive difference (MSSD), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VHMC), and degree centrality (DC) were calculated. SMRI and RSFC data were analysed from a sample of 130 female volunteers: 65 recAN and 65 pairwise age-matched HCs. Cortical grey matter thickness was assessed using FreeSurfer software. Fractional amplitude of low-frequency fluctuations (fALFF), mean-square successive difference (MSSD), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VHMC), and degree centrality (DC) were calculated. Abnormal regional homogeneity found in acute AN seems to normalize in recAN, supporting assumptions of a state rather than a trait marker. Aberrant fALFF values in the cerebellum and the infertior temporal gyrus could possibly hint towards trait factors or a scar (the latter, e.g., from prolonged periods of undernutrition), warranting further longitudinal research.


2019 ◽  
Vol 215 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Gin S. Malhi ◽  
Pritha Das ◽  
Tim Outhred ◽  
Richard A. Bryant ◽  
Vince Calhoun

BackgroundSubsyndromal emotional symptoms in adolescence may represent precursors for full-blown emotional disorders in early adulthood. Understanding the neurobiological mechanisms that drive this development is essential for prevention.AimsSelf-referential processing and emotion regulation are remodelled substantively during adolescence, therefore this study examined integration of key neural networks involved in these processes.MethodAt baseline, clinical and resting-state functional magnetic resonance imaging data were collected for 88 adolescent girls (mean age 15 years), and 71 of these girls underwent repeat clinical assessment after 2 years. These 71 girls were then partitioned into two groups depending on the presence (ES+) or absence (ES−) of emotional symptoms, and differences in dynamic functional network connectivity were determined and correlated with clinical variables.ResultsThe two groups displayed a differential pattern of functional connectivity involving the left lateral prefrontal network (LPFN). Specifically, in the ES+ group this network displayed positive coupling with the right LPFN but negative coupling with the default mode network, and the inverse of this pattern was found in the ES− group. Furthermore, the coupling strengths between left and right LPFN at the irst time point predicted follow-up depression and state anxiety scores.ConclusionsOur findings suggest that in adolescent girls, emotional symptoms may emerge as a result of impaired integration between networks involved in self-referential information processing and approach-avoidance behaviours. These impairments can compromise the pursuit of important goals and have an impact on emotion processing and finally may lead to the development of emotional disorders, such as anxiety and depression in adulthood.Declaration of interestNone.


2012 ◽  
Vol 522 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Yanhui Liao ◽  
Jinsong Tang ◽  
Alex Fornito ◽  
Tieqiao Liu ◽  
Xiaogang Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document