scholarly journals Gut Microbiota Composition and Predicted Microbial Metabolic Pathways of Obesity Prone and Obesity Resistant Outbred Sprague-Dawley CD Rats May Account for Differences in Their Phenotype

2021 ◽  
Vol 8 ◽  
Author(s):  
Diana N. Obanda ◽  
Michael J. Keenan ◽  
Ryan Page ◽  
Anne M. Raggio ◽  
Christopher M. Taylor ◽  
...  

Like humans, outbred Sprague-Dawley CD rats exhibit a polygenic pattern of inheritance of the obese phenotype and not all individuals exposed to a high calorie intake develop obesity. We hypothesized that differences in gut microbiota composition account for phenotype differences between obese prone (OP) and obese resistant (OR) rats. We studied the gut microbiota composition of OPand OR rats after a high fat (HF) diet and how they respond to fermentation of resistant starch (RS). In phase 1 of the study 28 OP and 28 OR rats were fed a HF diet. In order to determine causal role of microbiota on phenotypes, In phase 2, a microbiota transplant between the two phenotypes was performed before switching all rats to a HF diet supplemented with 20% RS. We determined microbiota composition by 16S sequencing and predicted microbiota function by PICRUSt2. Despite a similar calorie intake, in phase 2 OP rats gained more weight and accumulated more abdominal fat in both phase 1 and 2 compared to OR rats (P < 0.001; n = 6). The OP rats fermented RS more robustly compared with OR rats with an increase in total bacteria, short chain fatty acids, and increased weight of the cecum, but microbiota of OP rats had much lower alpha diversity and evenness. The microbiota of OP rats, had higher amounts of bacteria from order Bacteroidales, specifically family Muribaculaceae (S24-7), which is known to possess several starch degrading enzymes and was reported in previous studies to increase with fermentation of RS. The OR rats fermented RS less but had higher bacterial diversity and evenness and had significantly higher bacterial counts from phylum Firmicutes particularly order Clostridiales, genus Clostridium and an uncultured bacterium of the genus Akkermansia. The microbiota of OR rats had enhanced bacterial chemotaxis, phosphotransferase system (PTS), and fatty acid biosynthesis compared to OP rats whose microbiota had higher glycan degradation and LPS biosynthesis pathways. The microbiota transplant did not change obesity phenotype or microbiota composition. In conclusion, a higher alpha-diversity and evenness of the microbiota and higher proportions of Clostridiales and Akkermansia in OR rats were associated with a better metabolic phenotype with lower body fat. However, robust RS fermentation caused a lower diversity and evenness and did not result in a leaner phenotype.

Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2014 ◽  
Vol 9 (4) ◽  
pp. 189-198 ◽  
Author(s):  
Antonius Suwanto ◽  
Susan Soka ◽  
Dondin Sajuthi ◽  
Iman Rusmana

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Mélanie Deschasaux ◽  
Kristien Bouter ◽  
Andrei Prodan ◽  
Evgeni Levin ◽  
Albert Groen ◽  
...  

AbstractRecently, increased attention has been drawn to the composition of the intestinal microbiota and its possible role in metabolic syndrome and type 2 diabetes (T2DM). However, potential variation in gut microbiota composition across ethnic groups is rarely considered despite observed unequal prevalence for these diseases. Our objective was therefore to study the gut microbiota composition across health, metabolic syndrome and T2DM in a multi-ethnic population residing in the same geographical area. 16S rRNA gene sequencing was performed on fecal samples from 3926 participants to the HELIUS cohort (Amsterdam, The Netherlands), representing 6 ethnic groups (Dutch, Ghanaians, Moroccans, Turks, Surinamese of either African or South-Asian descent). Included participants completed a questionnaire and underwent a physical examination and overnight fasted blood sampling. Gut microbiota composition was compared across metabolic status (diabetes with and without metformin use, metabolic syndrome and its subsequent components, health) and ethnicities using Wilcoxon-Mann-Withney tests and logistic regressions. Overall, the gut microbiota alpha-diversity (richness, Shannon index and phylogenetic diversity) decreased with worsening of the metabolic state (comparing health to metabolic syndrome to T2DM) but this was only partially reproduced in ethnic-specific analyses. In line, a lower alpha-diversity was found in relation to all metabolic syndrome components as well as in T2DM subjects using metformin compared to non-users. Alterations, mainly decreased abundances, were also observed at the genus level (many Clostridiales) in metabolic syndrome subjects and more strongly in T2DM subjects with differences across ethnic groups. In particular, we observed decreased abundances of members of the Peptostreptococcaceae family and of Turicibacter and an increased abundance of a member of the Enterobacteriaceae family. Our data highlight several compositional differences in the gut microbiota of individuals with metabolic syndrome or T2DM. These features, confirming prior observations, give some insights into potential key intestinal bacteria related to a worsening of metabolic state. Our results also underscore possible ethnic-specific profiles associated with these microbiota alterations that should be further explored.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1836 ◽  
Author(s):  
Helen Robinson ◽  
Helen Barrett ◽  
Luisa Gomez-Arango ◽  
H. David McIntyre ◽  
Leonie Callaway ◽  
...  

The gut microbiome in pregnancy has been associated with various maternal metabolic and hormonal markers involved in glucose metabolism. Maternal ketones are of particular interest due to the rise in popularity of low-carbohydrate diets. We assessed for differences in the composition of the gut microbiota in pregnant women with and without ketonuria at 16 weeks gestation. Fecal samples were obtained from 11 women with fasting ketonuria and 11 matched controls. The samples were analyzed to assess for differences in gut microbiota composition by 16S rRNA sequencing. Supervised hierarchical clustering analysis showed significantly different beta-diversity between women with and without ketonuria, but no difference in the alpha-diversity. Group comparisons and network analysis showed that ketonuria was associated with an increased abundance of the butyrate-producing genus Roseburia. The bacteria that contributed the most to the differences in the composition of the gut microbiota included Roseburia, Methanobrevibacter, Uncl. RF39, and Dialister in women with ketonuria and Eggerthella, Phascolarctobacterium, Butyricimonas, and Uncl. Coriobacteriaceae in women without ketonuria. This study found that the genus Roseburia is more abundant in the gut microbiota of pregnant women with ketonuria. Roseburia is a butyrate producing bacterium and may increase serum ketone levels.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Mei Wang ◽  
Brooke Smith ◽  
Brock Adams ◽  
Miller Tran ◽  
Ryan Dilger ◽  
...  

Abstract Objectives Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea in human infants and young farm animals. Osteopontin (OPN), a glycoprotein present in high concentration in human milk, has immunomodulatory functions, which could indirectly impact the microbiota. Furthermore, a previous study has shown fecal microbiota composition differs between wild-type and OPN knockout mice. Herein, the effects of OPN-enriched algae on the gut microbiota composition and volatile fatty acid (VFA) concentrations of ETEC-infected piglets were assessed. Methods Naturally-farrowed piglets were sow-reared for 21 days and then randomized to two weaning diets: WT (formula + 1% wild-type algae) or OPN (formula + 1% OPN-enriched algae). On postnatal day (PND) 31, all piglets were infected orally with a live culture of ETEC (1010 colony-forming unit/3 mL dose) daily for three consecutive days. On PND 41, ascending colon (AC) contents were collected. Gut microbiota was assessed by sequencing V3-V4 regions of 16S rRNA gene and VFAs were determined by gas chromatography. Alpha-diversity and VFAs were analyzed using PROC MIXED procedure of SAS. Beta-diversity was evaluated by permutational multivariate analysis of variance (PERMANOVA) and differential abundance analysis on the bacterial genera was performed using DESeq2 package of R. Results Shannon indices were lower in the AC contents of OPN piglets compared to WT piglets. The overall colonic microbiota of OPN piglets differed from that of WT piglets (PERMANOVA P = 0.015). At genus level, OPN-enriched algae increased the abundance of Streptococcus, decreased the abundances of Sutterella, Candidatus Soleaferrea, dga-11 gut group, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-010, unculturedRuminococcaceae, Prevotella 2 and 7 compared to piglets consuming wild-type algae (P < 0. 05). OPN piglets also had higher (P < 0.05) concentrations of acetate, propionate, butyrate and valerate compared to WT. Conclusions In ETEC infected piglets, 1% OPN-enriched algae decreased alpha-diversity and modulated the microbiota composition and VFA profiles compared to 1% WT algae. Other studies have shown that OPN inhibits biofilm formation in vitro, but future research is needed to assess in vivo microbiome-modulation mechanisms. Funding Sources Triton Algae Innovations.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Casey T. Finnicum ◽  
Jeffrey J. Beck ◽  
Conor V. Dolan ◽  
Christel Davis ◽  
Gonneke Willemsen ◽  
...  

Abstract Background The gut microbiota composition is known to be influenced by a myriad of factors including the host genetic profile and a number of environmental influences. Here, we focus on the environmental influence of cohabitation on the gut microbiota as well as whether these environmentally influenced microorganisms are associated with cardiometabolic and inflammatory burden. We perform this by investigating the gut microbiota composition of various groups of related individuals including cohabitating monozygotic (MZ) twin pairs, non-cohabitating MZ twin pairs and spouse pairs. Results A stronger correlation between alpha diversity was found in cohabitating MZ twins (45 pairs, r = 0.64, p = 2.21 × 10− 06) than in non-cohabitating MZ twin pairs (121 pairs, r = 0.42, p = 1.35 × 10− 06). Although the correlation of alpha diversity did not attain significance between spouse pairs (42 pairs, r = 0.23, p = 0.15), the correlation was still higher than those in the 209 unrelated pairs (r = − 0.015, p = 0.832). Bray-Curtis (BC) dissimilarity metrics showed cohabitating MZ twin pairs had the most similar gut microbiota communities which were more similar than the BC values of non-cohabitating MZ twins (empirical p-value = 0.0103), cohabitating spouses (empirical p-value = 0.0194), and pairs of unrelated non-cohabitating individuals (empirical p-value< 0.00001). There was also a significant difference between the BC measures from the spouse pairs and those from the unrelated non-cohabitating individuals (empirical p-value< 0.00001). Intraclass correlation coefficients were calculated between the various groups of interest and the results indicate the presence of OTUs with an environmental influence and one OTU that appeared to demonstrate genetic influences. One of the OTUs (Otu0190) was observed to have a significant association with both the cardiometabolic and inflammatory burden scores (p’s < 0.05). Conclusions Through the comparison of the microbiota contents of MZ twins with varying cohabitation status and spousal pairs, we showed evidence of environmentally influenced OTUs, one of which had a significant association with cardiometabolic and inflammatory burden scores.


2021 ◽  
Author(s):  
Melinda Mei Lin Lau ◽  
Cindy Jia Yung Kho ◽  
LEONARD WHYE KIT LIM ◽  
Siew Chuiang Sia ◽  
Hung Hui Chung ◽  
...  

Aims: The gut microbiota is referred to an extra organ and is ciritical in assisting the host in terms of nutrition and immunity. Environmental stressors could alter gut microbial community and cause gut inflammation. This study aimed to investigate and compare the gut microbiota community between healthy and diseased Tor tambroides. Methodology and results: In this study, such gut microbial alterations were explored using NGS-based 16S rDNA sequencing on the Malaysian mahseer (T. tambroides). Three adult healthy and three diseased adult Malaysian mahseers (showing signs of exophthalmia, coelomic distension and petechial haemorrhage) were obtained from LTT Aquaculture Sdn Bhd. Our results revealed significant differences in microbial diversity, composition and function between both populations of T. tambroides. Alpha diversity analysis depicts lower diversity of gut microbiota composition in diseased T. tambroides as compared to the healthy group. In particular, Enterobacteriaceae, Aeromonas, Bacteroides, Vibrio and Pseudomonas were found within gut microbiota of the diseased fishes. In addition, cellulose-degrading bacteria and protease-producing bacteria were identified from the gut of T. tambroides. Conclusion, significance and impact of study: Thus, our findings emphasised on the association between the alteration in gut microbiota composition and infectious abdominal dropsy (IAD) in T. tambroides. This finding is important to provide basic information for further diagnosis, prevention and treatment of intestinal diseases in fish.


2020 ◽  
Author(s):  
Dandan Jiang ◽  
Xin He ◽  
Marc Valitutto ◽  
Li Chen ◽  
Qin Xu ◽  
...  

Abstract Background:The Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains of southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolome of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatography (UHPLC) based metabolomics were used to examine the fecal microbiota composition and the metabolomic profile of Chinese monals. Results: The results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial taxa in the two groups showed remarkable differences at phylum, class, order, and family levels. Metabolomic profiling also revealed differences, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, strong correlations of metabolite types and bacterial genus were detected. Conclusions: There were remarkable differences in the gut microbiota composition and metabolomic profile between wild and captive Chinese monals. This study has established a baseline for a normal gut microbiota and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive organisms have an impact on their overall health and reproduction.


2021 ◽  
Author(s):  
Vanille Déru ◽  
Alban Bouquet ◽  
Olivier Zemb ◽  
Benoît Blanchet ◽  
Marie-Léa De Almeida ◽  
...  

In pigs, the gut microbiota composition plays a major role in the process of digestion, but is influenced by many external factors, especially diet. To be used in breeding applications, genotype by diet interactions on microbiota composition have to be quantified, as well as their impact on genetic covariances with feed efficiency (FE) and digestive efficiency (DE) traits. This study aimed at determining the impact of an alternative diet on variance components of microbiota traits (genera and alpha diversity indices), and estimating genetic correlations between microbiota and efficiency traits for pigs fed a conventional (CO) or a high fiber (HF) diet. Fecal microbes of 812 full-siblings fed a CO diet and 752 pigs fed the HF diet were characterized at 16 weeks of age by sequencing the V3-V4 region of the 16S rRNA gene. A total of 231 genera were identified. Digestibility coefficients of nitrogen, organic matter and energy were predicted analyzing the same fecal samples with near infrared spectrometry. Daily feed intake, feed conversion ratio, residual feed intake and average daily gain (ADG) were also recorded. The 71 genera with less than 20% of zeros were retained for genetic analyses. Heritability of microbiota traits were similar between diets (from null to 0.38 +/- 0.12 in the CO diet and to 0.39 +/- 0.12 in the HF diet). Only three out of the 24 genera and two alpha diversity indices with significant heritabilities in both diets had genetic correlations across diets significantly different from 0.99 (P < 0.05), indicating limited genetic by diet interactions for these traits. When both diets were analyzed jointly, 59 genera had heritabilities significantly different from zero. Based on the genetic correlations between these genera and ADG, FE and DE traits, three groups of genera could be identified. A group of 29 genera was favorably correlated with DE and FE traits, 14 genera were unfavorably correlated with DE traits, and the last group of 16 genera had correlations close to zero with production traits. However, genera favorably correlated with DE and FE traits were unfavorably correlated with ADG, and vice versa. Alpha diversity indices had correlation patterns similar to the first group. In the end, genetic by diet interactions on gut microbiota composition of growing pigs were limited in this study. Based on this study, microbiota-based traits could be used as proxies to improve FE and DE in growing pigs.


2020 ◽  
Vol 98 (11) ◽  
pp. 803-809 ◽  
Author(s):  
Yuanjiao Liang ◽  
Qi Ming ◽  
Jinlan Liang ◽  
Yan Zhang ◽  
Hong Zhang ◽  
...  

The objective was to explore if and how the microbiota changed in polycystic ovary syndrome (PCOS) women compared with healthy women. Eight obese PCOS (PO group), 10 nonobese PCOS (PN group), and nine healthy normal weight women (control) (C group) were enrolled. Insulin (INS), testosterone (T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen (E2), and dehydroepiandrosterone (DHEA) were detected with radioimmunoassay. Antimullerian hormone (AMH), fasting glucose, and hemoglobin A1c (HbA1c) were determined by a chemiluminescence immunoassay, glucose oxidase method, and HPLC, respectively. Gut microbiota composition was evaluated by PCR. Alpha diversity was assessed using Chao1 and the Shannon index. PCOS women showed significantly higher T, LH, and LH/FSH and lower FSH levels than the C group (p < 0.05). The AMH level was significantly higher in the PO than in the PN group (p < 0.05). The PO group presented a significantly higher fasting INS level and HMOA-IR scores than the other groups, lower observed SVs and alpha diversity than the C group, higher beta diversity than the PN group (p < 0.05), and decreased abundances of genera (mainly butyrate producers). Regression analysis showed that decreased abundances of several genera were correlated with higher circulating T and impaired glucose metabolism. PCOS is associated with changes in the gut microbiota composition. Obesity has a driving role in the development of dysbiotic gut microbiota in PCOS.


Sign in / Sign up

Export Citation Format

Share Document