scholarly journals Physicochemical Properties and Biological Activities of Silver Carp Scale Peptide and Its Nanofiltration Fractions

2022 ◽  
Vol 8 ◽  
Author(s):  
Xiao-yan Zu ◽  
Ya-jing Zhao ◽  
Shi-ming Fu ◽  
Tao Liao ◽  
Hai-lan Li ◽  
...  

To explore the physicochemical properties and biological functions of silver carp scale peptide (SCSP), its molecular-weight fractions SCSP-I, II, and III obtained by nanofiltration were assessed for their solubility, emulsibility, free radical scavenging ability, effect on the proliferation of mouse B16 cells. The results showed that the solubility of each fraction of SCSP was higher than 90%, SCSP-II and III were higher than 95%. The antioxidant powers on ⦁OH, O2-⦁ and Fe3+ were ranked as SCSP-III > SCSP-II > SCSP-I > SCSP. All fractions of SCSP had no toxic or side effects in mouse B16 melanoma cells experiments in vitro. At a concentration of 0.01 mg/mL, the tyrosinase activity of B16 cells in the SCSP-II fraction was significantly lower than that of the α-arbutin (P < 0.05), at 65.37%. The molecular weight distribution of SCSP was 399–1404 Dalton and 13 peptide sequences were detected. Among them, SCSP-II contained many hydrophobic amino acids, and SCSP-III stood out for combining arginine with hydrophobic amino acids. This may be the reason why the low molecular-weight SCSPs show the strong antioxidant activity and strong tyrosinase inhibition. The work provides a data base for the development of SCSP and increases the possibility of its application.

2018 ◽  
Vol 15 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Parvesh Singh ◽  
Nomandla Ngcoya ◽  
Ramgopal Mopuri ◽  
Nagaraju Kerru ◽  
Neha Manhas ◽  
...  

Background: Diabetes Mellitus (DM) is a complex metabolic disease illustrated by abnormally high levels of plasma glucose or hyperglycaemia. Accordingly, several α-glucosidase inhibitors have been developed for the treatment of diabetes and other degenerative disorders. While, a coumarin ring has the privilege to represent numerous natural and synthetic compounds with a wide spectrum of biological activities e.g. anti-cancer, anti-HIV, anti-viral, anti-malarial, anti-microbial, anti-convulsant, anti-hypertensive properties. Besides this, coumarins have also shown potential to inhibit α-glucosidase leading to a generation of new promising antidiabetic agents. However, the testing of O-substituted coumarins for α-glucosidase inhibition has evaded the attention of medicinal chemists. Methods: For O-alkylation/acetylation reactions, the hydroxyl coumarins (A-B) initially activated by K2CO3 in dry DMF were reacted with variedly substituted haloalkanes at room temperature under nitrogen. The synthesized compounds were tested for their α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity and anti-oxidant activity using DPPH radical scavenging activity. In silico docking simulations were conducted using CDocker module in DS (Accelrys) to explore the binding modes of the representative compounds in the catalytic site of α-glucosidase. Results: All the coumarin analogues (A1, B1, A2-A10, B2-B8) including their precursors (A-B) were evaluated for their in vitro α-glucosidase inhibition using acarbose as a standard inhibitor. All the mono O-alkylated coumarins (except A1) showed significant (p <0.05) α-glucosidase inhibition relative to the hydroxyl coumarin (A) with IC50 values ranging between 11.084±0.117 to 145.24± 29.22 µg/mL. Compound 7-(benzyloxy)-4, 5-dimethyl-2H-chromen-2-one (A9) bearing a benzyl group (Ph-CH2-) at position 7 showed a remarkable (p <0.05) increase in the activity (IC50 = 11.084±0.117 µg/mL), almost four-fold more than acarbose (IC50 = 40.578±5.999 µg/mL). The introduction of –NO2 group dramatically improved the anti-oxidant activity of coumarin, while the O-alkylation/acetylation decreased the activity. Conclusion: The present study describes the synthesis of functionalized coumarins and their evaluation for α-glucosidase inhibition and antioxidant activity under in vitro conditions. Based on IC50 data, the mono O-alkylated coumarins were observed to be stronger inhibitors of α-glucosidase with respect to their bis O-alkylated analogues. Coumarin (A9) bearing O-benzyloxy group displayed the strongest α-glucosidase inhibition, even higher than the standard inhibitor acarbose. The coumarin (A10) bearing –NO2 group showed the highest anti-oxidant activity amongst the synthesized compounds, almost comparable to the ascorbic acid. Finally, in silico docking simulations revealed the role of hydrogen bonding and hydrophobic forces in locking the compounds in catalytic site of α-glucosidase.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2033
Author(s):  
Chuleeporn Bungthong ◽  
Sirithon Siriamornpun

Silk proteins have many advantageous components including proteins and pigments. The proteins—sericin and fibroin—have been widely studied for medical applications due to their good physiochemical properties and biological activities. Various strains of cocoon display different compositions such as amino-acid profiles and levels of antioxidant activity. Therefore, the objectives of this study were to find a suitable silk protein extraction method to obtain products with chemical and biological properties suitable as functional foods in two strains of Bombyx mori silk cocoon (Nangsew strains; yellow cocoon) and Samia ricini silk cocoon (Eri strains; white cocoon) extracted by water at 100 °C for 2, 4, 6 and 8 h. The results showed that Nangsew strains extracted for 6 h contained the highest amounts of protein, amino acids, total phenolics (TPC) and total flavonoids (TFC), plus DPPH radical-scavenging activity, ABTS radical scavenging capacity, and ferric reducing antioxidant power (FRAP), anti-glycation, α-amylase and α-glucosidase inhibition. The longer extraction time produced higher concentrations of amino acids, contributing to sweet and umami tastes in both silk strains. It seemed that the bitterness decreased as the extraction time increased, resulting in improvements in the sweetness and umami of silk-protein extracts.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 604
Author(s):  
Liyan Wang ◽  
Liang Lei ◽  
Kang Wan ◽  
Yuan Fu ◽  
Hewen Hu

Active films based on carboxymethyl chitosan incorporated corn peptide were developed, and the effect of the concentration of corn peptide on films was evaluated. Physicochemical properties of the films, including thickness, opacity, moisture content, color, mechanical properties, water vapor permeability, and oil resistance, were measured. Biological activities of the films, including the antioxidant and antibacterial activities, were characterized in terms of 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging activity, reducing power, the total antioxidant activity, and the filter disc inhibition zone method. The results indicated that the incorporation of corn peptide caused interactions between carboxymethyl chitosan and corn peptide in Maillard reaction and gave rise to the films light yellow appearance. Compared with the Control, the degree of glycosylation, browning intensity, thickness, opacity, tensile strength, antioxidant activity, and antibacterial activity of films were increased, but the elongation, vapor permeability, and oil resistance of films were decreased. The films based on corn peptide and carboxymethyl chitosan can potentially be applied to food packaging.


2021 ◽  
Vol 18 ◽  
Author(s):  
Nayla Javed ◽  
Shakeel Ijaz ◽  
Naveed Akhtar ◽  
Haji Muhammad Shoaib Khan

Background: Arctostaphylos uva-ursi (AUU) being rich in polyphenols and arbutin is known to have promising biological activities and can be a potential candidate as a cosmaceutical. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of many drugs including plant extracts. Objective: The objective of this work was to develop an optimized nanostructured ethosomal gel formulation loaded with AUU extract and evaluated for skin rejuvenation and depigmentation. Methods: AUU extract was tested for phenolic and flavonoid content, radical scavenging potential, reducing power activity, and in-vitro SPF (sun protection factor) estimation. AUU loaded 12 formulations were prepared and characterized by SEM (scanning electron microscopy), vesicular size, zeta potential, and entrapment efficiency (%EE). The optimized formulation was subjected to non-invasive in-vivo investigations after incorporating it into the gel system and ensuring its stability and skin permeation. Results: Ethosomal vesicles were spherical in shape and Zeta size, zeta potential, PDI (polydispersity index), % EE and in-vitro skin permeation of optimized formulation (F3) were found to be 114.7nm, -18.9mV, 0.492, 97.51±0.023%, and 79.88±0.013% respectively. AUU loaded ethosomal gel formulation was stable physicochemically and exhibited non-Newtonian behavior rheologically. Moreover, it significantly reduced skin erythema, melanin as well as sebum level and improved skin hydration and elasticity. Conclusion: A stable AUU based ethosomal gel formulation could be a better vehicle for phytoextracts than conventional formulations for cosmeceutical applications such as for skin rejuvenation and depigmentation etc.


2020 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
Bui Van Hoai ◽  
Ngo Dai Nghiep ◽  
Dao An Quang ◽  
Nguyen Thi Nam Phuong

Chitosan with 80% degree of deacetylation was hydrolyzed by cellulase of Trichoderma viride to prepare chitooligosaccharides (COSs) by the fractionation of the COSs with ultrafiltration membrane. The antioxidant activities of the COSs were clarified in this study by reducing power and free radical scavenging ability assay by UV-VIS absorption spectrum. The results show that the COS 1 (10,000-5,000 Da), COS 2 (5,000-3,000 Da), COS 3 (3,000-1,000 Da) and COS 4 (less than1,000 Da) segments have antioxidant properties.The antioxidant activitives of the COSs increased with the increment of concentration, and they also depended on molecular weight.


2021 ◽  
Author(s):  
Hina Gul ◽  
Muhammad Awais ◽  
Salina Saddick ◽  
Falak Sher Khan ◽  
Muhammad Gulfraz ◽  
...  

Abstract Dodonaea viscosa L. Jacq. is an evergreen shrub and native to Asia, Africa and Australia. It has been used as traditional medicine in different countries. The foremost objective of the current study was to discover protective potential of D. Viscosa flowers Methanol (DVM) and Chloroform (DVC) extracts against CCL4 induced toxicity in mice. This study was intended to identify phytochemicals through HPLC, GCMS and FT-IR as well as in vitro antioxidant and in vitro antituberculosis activity. Our comprehensive findings indicate that Dodonaea viscosa is valuable and widespread herbal medicines through therapeutic potentials for curing various ailments. Dodonaea viscosa flowers are found to have protective effect against oxidative stress produced by CCL4 in liver, kidney and spleen. The level of hepatic enzymes (ALP, AST ALT and Direct bilirubin), hematological parameters (RBCs, WBCs and Platelets), total protein and liver antioxidant enzymes (SOD, GPx and CAT) were restored by the intake of DV extracts after decline in levels by CCL4. Histopathological results discovered the defensive effect of 300mg/kg of DVM extract against CCL4 induced damage, thus having improved protective effect as compared to DVC and control. As a result of analysis total flavonoids and total phenolics were also revealed. Phytochemical investigation by HPLC identified gallic acid, epicatechin, cumeric acid, flavonoids while Oleic acid (Octadecenoic acid) (C18H34O2), Stearic acid (C18H36O2), Ricinoleic acid (C18H34O3) and Cedrol (C15H26O) was estimated by GCMS. DVM extract exhibited resistance against in vitro Mycobacterium tuberculosis strains. This study proposed that protective effect of DV against oxidative damage induced in Liver, Kidney and Spleen can possibly be correlated to their antioxidant as well as free radical scavenging property.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2626
Author(s):  
Wael Sobhy Darwish ◽  
Abada El Sayed Khadr ◽  
Maher Abd El Naby Kamel ◽  
Mabrouk A. Abd Eldaim ◽  
Ibrahim El Tantawy El Sayed ◽  
...  

Ceratonia siliqua (Carob) is an evergreen Mediterranean tree, and carob pods are potentially nutritive and have medicinal value. The present study was carried out to estimate the possible biological activities of phytochemical-characterized carob pod aqueous extract (CPAE). The phytochemical contents of CPAE were determined by using colorimetric methods and HPLC. In addition, the free radical scavenging properties and anti-diabetic, anti-hemolytic, and antimicrobial activities were estimated by using standardized in vitro protocols. The phytochemical analysis revealed that CPAE was rich in polyphenols, flavonoids, and alkaloids, where it contained a significant amount of gallic acid, catechin, and protocatechuic acid. Furthermore, CPAE exhibited strong antioxidant activity where it prevented the formation of 2, 2-Diphenyl-1-picryl hydrazyl, hydroxyl, and nitric oxide free radicals. Additionally, it had a potent inhibitory effect against digestive enzymes (amylase, maltase, sucrase, and lactase). Moreover, CPAE exhibited anti-Staph aureus, anti-Escherichia coli, anti-Candida albicans, and anti-herpes simplex type I virus (HSV-I). Finally, CPAE protected the erythrocyte membrane from hypotonic solution-induced hemolysis. Altogether, CPAE could be regarded as an interesting source of biologically active antioxidant, anti-diabetic, and antimicrobial preparation for a potential application in pharmaceutical and food supplement fields.


Sign in / Sign up

Export Citation Format

Share Document