scholarly journals Prognostic Value of an Autophagy-Related Five-Gene Signature for Lower-Grade Glioma Patients

2021 ◽  
Vol 11 ◽  
Author(s):  
Jin-Cheng Guo ◽  
Qing-Shuang Wei ◽  
Lei Dong ◽  
Shuang-Sang Fang ◽  
Feng Li ◽  
...  

Background: Molecular characteristics can be good indicators of tumor prognosis and have been introduced into the classification of gliomas. The prognosis of patients with newly classified lower-grade gliomas (LGGs, including grade 2 and grade 3 gliomas) is highly heterogeneous, and new molecular markers are urgently needed.Methods: Autophagy related genes (ATGs) were obtained from Human Autophagy Database (HADb). From the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), gene expression profiles including ATG expression information and patient clinical data were downloaded. Cox regression analysis, receiver operating characteristic (ROC) analysis, Kaplan–Meier analysis, random survival forest algorithm (RSFVH) and stratification analysis were performed.Results: Through univariate Cox regression analysis, we found a total of 127 ATGs associated with the prognosis of LGG patients from TCGA dataset and a total of 131 survival-related ATGs from CGGA dataset. Using TCGA dataset as the training group (n = 524), we constructed a five-ATG signature (including BAG1, BID, MAP1LC3C, NRG3, PTK6), which could divide LGG patients into two risk groups with significantly different overall survival (Log Rank P < 0.001). Then we confirmed in the independent CGGA dataset that the five-ATG signature had the ability to predict prognosis (n = 431, Log Rank P < 0.001). We further discovered that the predictive ability of the five-ATG signature was better than the existing clinical indicators and IDH mutation status. In addition, the five-ATG signature could further classify patients after receiving radiotherapy or chemotherapy into groups with different prognosis.Conclusions: We identified a five-ATG signature that could be a reliable prognostic marker and might be therapeutic targets for autophagy therapy for LGG patients.

2020 ◽  
Author(s):  
Xing Chen ◽  
Junjie Zheng ◽  
Min ling Zhuo ◽  
Ailong Zhang ◽  
Zhenhui You

Abstract Background: Breast cancer (BRCA) represents the most common malignancy among women worldwide that with high mortality. Radiotherapy is a prevalent therapeutic for BRCA that with heterogeneous effectiveness among patients. Methods: we proposed to develop a gene expression-based signature for BRCA radiotherapy sensitivity prediction. Gene expression profiles of BRCA samples from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were obtained and used as training and independent testing dataset, respectively. Differential expression genes (DEGs) in BRCA tumor samples compared with their paracancerous samples in the training set were identified by using edgeR Bioconductor package followed by dimensionality reduction through autoencoder method and univariate Cox regression analysis to screen genes among DEGs that with significant prognosis significance in patients that were previously treated with radiation. LASSO Cox regression method was applied to screen optimal genes for constructing radiotherapy sensitivity prediction signature. Results: 603 DEGs were obtained in BRCA tumor samples, and seven out of which were retained after univariate cox regression analysis. LASSO Cox regression analysis finally remained six genes based on which the radiotherapy sensitivity prediction model was constructed. The signature was proved to be robust in both training and independent testing sets and an independent marker for BRCA radiotherapy sensitivity prediction. Conclusions: this study should be helpful for BRCA patients’ therapeutics selection and clinical decision.


2020 ◽  
Author(s):  
Qing Zhang ◽  
Qingyu Liang ◽  
Gefei Guan ◽  
Wen Cheng ◽  
Lianhe Yang ◽  
...  

Abstract Background: Vitamins not only play a pivotal role in maintaining homeostasis of the body, but also have complex impacts on the occurrence and progression of tumors. However, the effects of vitamins on glioma and the underlying mechanism have not been fully elucidated. Methods: Vitamin -related genes were extracted from the Molecular Signature Database v7.1 (MSigDB). The overlapping overall survival (OS)-related genes in The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), and GSE16011 cohorts screened out by univariate COX regression analysis were utilized to construct a risk model based on the TCGA cohort via random survival forest analysis and multivariate COX regression analysis. The powerful prognostic predictive potential of the vitamin-related risk signature was verified by Kaplan–Meier survival analysis and receiver operating characteristic (ROC) analysis in the three datasets. The ssGSEA method of the GSVA package was used for functional enrichment and immune cell component analyses. ESTIMATE score analysis was used for auxiliary analysis of glioma immune characteristics. A nomogram was constructed and assessed based on the TCGA dataset.Results: The vitamin-related six-gene (POSTN, IRX5, EEF2, RAB27A, MDM2, and ENO1) risk signature constructed based on the TCGA dataset accurately predicted the outcomes of glioma patients and credibly distinguished between different levels and molecular subtypes of glioma in the TCGA, CGGA, and GSE16011 cohorts. Gliomas with high risk scores exhibited high immune scores, low tumor purity, and immunosuppressive features. The nomogram constructed by combining the vitamin-related risk signature and clinicopathological factors precisely predicted the 1-, 3-, and 5-year OS of glioma patients.Conclusions: Our study revealed that the vitamin-related six-gene risk signature, as an independent prognostic factor, could accurately distinguish the grade, molecular subtype, and immune characteristics of glioma.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Qingyu Liang ◽  
Gefei Guan ◽  
Xue Li ◽  
Chunmi Wei ◽  
Jianqi Wu ◽  
...  

Abstract Background Molecular classification has laid the framework for exploring glioma biology and treatment strategies. Pro-neural to mesenchymal transition (PMT) of glioma is known to be associated with aggressive phenotypes, unfavorable prognosis, and treatment resistance. Recent studies have highlighted that long non-coding RNAs (lncRNAs) are key mediators in cancer mesenchymal transition. However, the relationship between lncRNAs and PMT in glioma has not been systematically investigated. Methods Gene expression profiles from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GSE16011, and Rembrandt with available clinical and genomic information were used for analyses. Bioinformatics methods such as weighted gene co-expression network analysis (WGCNA), gene set enrichment analysis (GSEA), Cox analysis, and least absolute shrinkage and selection operator (LASSO) analysis were performed. Results According to PMT scores, we confirmed that PMT status was positively associated with risky behaviors and poor prognosis in glioma. The 149 PMT-related lncRNAs were identified by WGCNA analysis, among which 10 (LINC01057, TP73-AS1, AP000695.4, LINC01503, CRNDE, OSMR-AS1, SNHG18, AC145343.2, RP11-25K21.6, RP11-38L15.2) with significant prognostic value were further screened to construct a PMT-related lncRNA risk signature, which could divide cases into two groups with distinct prognoses. Multivariate Cox regression analyses indicated that the signature was an independent prognostic factor for high-grade glioma. High-risk cases were more likely to be classified as the mesenchymal subtype, which confers enhanced immunosuppressive status by recruiting macrophages, neutrophils, and regulatory T cells. Moreover, six lncRNAs of the signature could act as competing endogenous RNAs to promote PMT in glioblastoma. Conclusions We profiled PMT status in glioma and established a PMT-related 10-lncRNA signature for glioma that could independently predict glioma survival and trigger PMT, which enhanced immunosuppression.


2022 ◽  
Author(s):  
Thongher Lia ◽  
Yanxiang Shao ◽  
Parbatraj Regmi ◽  
Xiang Li

Bladder cancer is one of the highly heterogeneous disorders accompanied by a poor prognosis. This study aimed to construct a model based on pyroptosis‑related lncRNA to evaluate the potential prognostic application in bladder cancer. The mRNA expression profiles of bladder cancer patients and corresponding clinical data were downloaded from the public database from The Cancer Genome Atlas (TCGA). Pyroptosis‑related lncRNAs were identified by utilizing a co-expression network of Pyroptosis‑related genes and lncRNAs. The lncRNA was further screened by univariate Cox regression analysis. Finally, 8 pyroptosis-related lncRNA markers were established using Lasso regression and multivariate Cox regression analysis. Patients were separated into high and low-risk groups based on the performance value of the median risk score. Patients in the high-risk group had significantly poorer overall survival (OS) than those in the low-risk group (p < 0.001), and In multivariate Cox regression analysis, the risk score was an independent predictive factor of OS ( HR>1, P<0.01). The area under the curve (AUC) of the 3- and 5-year OS in the receiver operating characteristic (ROC) curve were 0.742 and 0.739 respectively. In conclusion, these 8 pyroptosis-related lncRNA and their markers may be potential molecular markers and therapeutic targets for bladder cancer patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dankun Luo ◽  
Wenchao Yao ◽  
Qiang Wang ◽  
Qiu Yang ◽  
Xuxu Liu ◽  
...  

AbstractLong non-coding RNA (lncRNA) is a prognostic biomarker for many types of cancer. Here, we aimed to study the prognostic value of lncRNA in Breast Invasive Carcinoma (BRCA). We downloaded expression profiles from The Cancer Genome Atlas (TCGA) datasets. Subsequently, we screened the differentially expressed genes between normal tissues and tumor tissues. Univariate Cox, LASSO regression, and multivariate Cox regression analysis were used to construct a lncRNA prognostic model. Finally, a nomogram based on the lncRNAs model was developed, and weighted gene co-expression network analysis (WGCNA) was used to predict mRNAs related to the model, and to perform function and pathway enrichment. We constructed a 6-lncRNA prognostic model. Univariate and multivariate Cox regression analysis showed that the 6-lncRNA model could be used as an independent prognostic factor for BRCA patients. We developed a nomogram based on the lncRNAs model and age, and showed good performance in predicting the survival rates of BRCA patients. Also, functional pathway enrichment analysis showed that genes related to the model were enriched in cell cycle-related pathways. Tumor immune infiltration analysis showed that the types of immune cells and their expression levels in the high-risk group were significantly different from those in the low-risk group. In general, the 6-lncRNA prognostic model and nomogram could be used as a practical and reliable prognostic tool for invasive breast cancer.


Epigenomics ◽  
2021 ◽  
Author(s):  
Junyu Huo ◽  
Liqun Wu ◽  
Yunjin Zang

Aims: To investigate the prognostic significance of hypoxia- and ferroptosis-related genes for gastric cancer (GC). Materials & methods: We extracted data on 259 hypoxia- and ferroptosis-related genes from The Cancer Genome Atlas and identified the differentially expressed genes between normal (n = 32) and tumor (n = 375) tissues. A risk score was established by univariate Cox regression analysis and LASSO penalized Cox regression analysis. Results: The risk score contained eight genes showed good performance in predicting overall survival and relapse-free survival in GC patients in both the training cohort (The Cancer Genome Atlas, n = 350) and the testing cohorts (GSE84437, n = 431; GSE62254, n = 300; GSE15459, n = 191; GSE26253, n = 432). Conclusion: The eight-gene signature may help to the improve the prognostic risk classification of GC.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hao Zuo ◽  
Luojun Chen ◽  
Na Li ◽  
Qibin Song

Pancreatic cancer is known as “the king of cancer,” and ubiquitination/deubiquitination-related genes are key contributors to its development. Our study aimed to identify ubiquitination/deubiquitination-related genes associated with the prognosis of pancreatic cancer patients by the bioinformatics method and then construct a risk model. In this study, the gene expression profiles and clinical data of pancreatic cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database and the Genotype-tissue Expression (GTEx) database. Ubiquitination/deubiquitination-related genes were obtained from the gene set enrichment analysis (GSEA). Univariate Cox regression analysis was used to identify differentially expressed ubiquitination-related genes selected from GSEA which were associated with the prognosis of pancreatic cancer patients. Using multivariate Cox regression analysis, we detected eight optimal ubiquitination-related genes (RNF7, NPEPPS, NCCRP1, BRCA1, TRIM37, RNF25, CDC27, and UBE2H) and then used them to construct a risk model to predict the prognosis of pancreatic cancer patients. Finally, the eight risk genes were validated by the Human Protein Atlas (HPA) database, the results showed that the protein expression level of the eight genes was generally consistent with those at the transcriptional level. Our findings suggest the risk model constructed from these eight ubiquitination-related genes can accurately and reliably predict the prognosis of pancreatic cancer patients. These eight genes have the potential to be further studied as new biomarkers or therapeutic targets for pancreatic cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jingwei Zhao ◽  
Le Wang ◽  
Guozhang Hu ◽  
Bo Wei

Background. This study aims to develop novel signatures for glioblastoma multiforme (GBM). Methods. GBM expression profiles from The Cancer Genome Atlas (TCGA) were downloaded and DEGs between tumor and normal samples were identified by differential expression analysis (DEA). A risk signature was developed by applying weighted gene coexpression network analysis (WGCNA) and Cox regression analysis. Patients were divided into high and low risk group, followed by evaluating the performance of the signature via Kaplan-Meier curve analysis. In addition, the prognostic significance of the signature was further validated using an independent validation dataset from Chinese Glioma Genome Atlas (CGGA). DEGs between high and low risk group were subjected to functional annotation. Results. A total of 748 DEGs were identified between primary tumor and normal samples. Following WGCNA and Cox regression analysis, 6 DEGs were identified and used to construct a risk signature. The signature showed high performance in both training and validation dataset. Subsequently, 397 DEGs were identified between high and low risk group. These DEGs were mainly enriched in terms related to calcium signaling, cAMP-mediated signaling, and synaptic transmission. Conclusions. The risk signature may contribute to GBM diagnosis in future clinical practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Feng Xie ◽  
Xiaofeng Liu ◽  
Hua Liu ◽  
Min Wei ◽  
Wei Liu

Background. Advanced cervical carcinoma carries a particularly poor prognosis, and few treatment options exist. It is very important to find a method to evaluate the prognosis and survival rate of cervical carcinoma. The metastasis and invasion of cervical carcinoma are closely related to tumor immune microenvironment (TIME), and immune related genes (IRGs) are involved in the regulation of TIME. However, the role of IRGs in the prognosis of patients with cervical carcinoma remains unclear. Methods. The gene expression profiles of cervical carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database, and IRG information were obtained from the ImmPort database. The IRGs were screened by coexpression analysis and were also performed function enrichment and pathway analyses. A prognosis model was built based on IRGs, and the risk score (RS) was calculated by Cox regression analysis. The accuracy was assessed by receiver operating characteristic (ROC) curve analysis. Besides, the relationship between RS and TIMER-generating immune cell content was performed by immune infiltration analysis. Results. In a total of 2503 differentially expressed genes (DEGs), 204 genes were IRGs, 20 of which were crucially correlated with the survival rate of cervical carcinoma. On the basis of Cox regression analysis, 6 IRGs were included in the prognosis model to calculate the RS. Kaplan-Meier survival and ROC analyses showed that the prognostic function of the model was superior to the current model constructed by clinicopathological risk factors. In addition, these 6 IRG signatures were related to the immune infiltration levels of six immune cells and the overall survival (OS) of cervical carcinoma. Finally, C-terminal Src kinase (CSK) gene is related to tumor metastasis, and Slit guidance ligand 2 (Slit2) is related to tumor clinical stage. Conclusion. The IRGs may contribute to the stratification of prognosis, and CSK/Slit2 may be two suppressor genes for cervical carcinoma.


2021 ◽  
Vol 16 (1) ◽  
pp. 323-335
Author(s):  
Hai-Yan Yuan ◽  
Ya-Juan Lv ◽  
Yi Chen ◽  
Dan Li ◽  
Xi Li ◽  
...  

Abstract TEA domain family members (TEADs) play important roles in tumor progression. Till now, the genomic status of TEADs in patients with glioma has not been well investigated. To confirm whether the genomic status of TEADs could affect the prognosis of patients with glioma, the copy number variation (CNV), mutation and expression data of glioma cohorts in The Cancer Genome Atlas, Gene Expression Omnibus and Chinese Glioma Genome Atlas were comprehensively analyzed. Results showed that TEAD CNV frequency in lower grade gliomas (LGGs) was higher than in glioblastoma multiforme (GBM). Multivariate cox regression analysis showed that TEAD4 CNV increase was significantly associated with overall survival (OS) and disease-free survival (DFS) in LGGs (OS p = 0.022, HR = 1.444, 95% CI: 1.054–1.978; DFS p = 0.005, HR = 1.485, 95% CI: 1.124–1.962), while not in GBM. Patients with TEAD4 CNV increase showed higher expression level of TEAD4 gene. In LGG patients with IDH mutation, those with higher TEAD4 expression levels had shorter OS and DFS. Integrating TEAD4 CNV increase, IDH mutations, TP53 mutation, ATRX mutation and 1p19q co-deletion would separate patients with LGG into four groups with significant differences in prognosis. These study results suggested that TEAD4 variations were independent predictive biomarkers for the prognosis in patients with LGG with IDH mutation.


Sign in / Sign up

Export Citation Format

Share Document