scholarly journals DIAPH1 Promotes Laryngeal Squamous Cell Carcinoma Progression Through Cell Cycle Regulation

2021 ◽  
Vol 11 ◽  
Author(s):  
Jiechao Yang ◽  
Qiang Huang ◽  
Yang Guo ◽  
Zheqiang Wei ◽  
Liang Zhou ◽  
...  

The diaphanous related formin 1 (DIAPH1) protein is involved in the regulation of dynamic cytoskeleton reorganization, which is closely related to mitosis and the cell cycle. Cell cycle disorders are generally regarded as important underlying causes of many cancers. In the current study, we have revealed that DIAPH1 expression is an independent prognostic factor for overall survival in patients with laryngeal squamous cell carcinoma (LSCC) and that DIAPH1 promotes colony formation, cell proliferation, and G1/S progression in LSCC cells. Additionally, DIAPH1 promotes growth of AMC-HN-8 LSCC-derived tumors in vivo. In this study, RNA-sequencing analysis revealed that DIAPH1 knockdown led to changes in the expression of genes associated with signaling during the cell cycle. Using western blot analyses, we further demonstrated that DIAPH1 knockdown resulted in upregulation of p21Waf1/Cip1, p19Ink4d, p27Kip1, and p16Ink4a and downregulation of cyclinA2, cyclinD1, CDK2, CDK4, and CDK6. These results suggest that DIAPH1 influences the expression of genes in several signaling pathways and promotes LSCC progression by regulating the cell cycle.

2020 ◽  
Author(s):  
Yixuan Yang ◽  
Bing Zhu ◽  
Zhaofeng Ning ◽  
Xiaodong Wang ◽  
Zhaoxia Li ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with a high incidence and poor prognosis. The document of circular RNAs (circRNAs) is frequently associated with cancer development. This study intended to explore the functional mechanism of circ_DLG1 in ESCC.Methods: The expression of circ_DLG1, miR-338-3p and Mitogen-Activated Protein Kinase Kinase Kinase 9 (MAP3K9) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell cycle, proliferation, migration and invasion were performed for functional analysis using flow cytometry, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and transwell assay, respectively. The protein levels of MAP3K9, p38, phosphor p38 (p-p38), ERK1/2, phosphor ERK1/2 (p-ERK1/2) were detected by western blot. Bioinformatics tool for target prediction used the online tool starBase. Dual-luciferase reporter assay was performed to verify the target relationship. The animal experiments were performed to ascertain the role of circ_DLG1 in vivo.Results: The expression of circ_DLG1 was elevated in ESCC tissues, plasma and cells. Circ_DLG1 knockdown inhibited cell cycle, proliferation, migration and invasion. MAP3K9 was highly expressed in ESCC tissues and cells, and its overexpression rescued the effects of circ_DLG1 knockdown. MiR-338-3p was a link between circ_DLG1 and MAP3K9, and circ_DLG1 regulated the expression of MAP3K9 by targeting miR-338-3p. The MAPK/ERK pathway was involved in the circ_DLG1/miR-338-3p/MAP3K9 regulatory axis. Circ_DLG1 knockdown blocked the tumor growth in vivo by regulating miR-338-3p and MAP3K9.Conclusion: Circ_DLG1 contributed to the malignant progression of ESCC by mediating the miR-338-3p/MAP3K9 axis via activating the MAPK/ERK signaling pathway. This paper provided a novel action mode of circ_DLG1 in ESCC.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Wei Gao ◽  
Yuliang Zhang ◽  
Hongjie Luo ◽  
Min Niu ◽  
Xiwang Zheng ◽  
...  

Abstract Spindle and kinetochore-associated complex subunit 3 (SKA3) is a well-known regulator of chromosome separation and cell division, which plays an important role in cell proliferation. However, the mechanism of SKA3 regulating tumor proliferation via reprogramming metabolism is unknown. Here, SKA3 is identified as an oncogene in laryngeal squamous cell carcinoma (LSCC), and high levels of SKA3 are closely associated with malignant progression and poor prognosis. In vitro and in vivo experiments demonstrate that SKA3 promotes LSCC cell proliferation and chemoresistance through a novel role of reprogramming glycolytic metabolism. Further studies reveal the downstream mechanisms of SKA3, which can bind and stabilize polo-like kinase 1 (PLK1) protein via suppressing ubiquitin-mediated degradation. The accumulation of PLK1 activates AKT and thus upregulates glycolytic enzymes HK2, PFKFB3, and PDK1, resulting in enhancement of glycolysis. Furthermore, our data reveal that phosphorylation at Thr360 of SKA3 is critical for its binding to PLK1 and the increase in glycolysis. Collectively, the novel oncogenic signal axis “SKA3-PLK1-AKT” plays a critical role in the glycolysis of LSCC. SKA3 may serve as a prognostic biomarker and therapeutic target, providing a potential strategy for proliferation inhibition and chemosensitization in tumors, especially for LSCC patients with PLK1 inhibitor resistance.


2019 ◽  
Vol 97 (5) ◽  
pp. 589-599 ◽  
Author(s):  
Jie Yang ◽  
Fan Yu ◽  
Jinlei Guan ◽  
Tao Wang ◽  
Changjiang Liu ◽  
...  

A previous study has reported that knockdown of RING finger protein 2 (RNF2) increases the radiosensitivity of esophageal cancer cells both in vitro and in vivo. However, the effect of RNF2 knockdown on radiosensitivity in squamous cell carcinoma (SqCC) remains unknown. For this, NCI-H226 and SK-MES-1 cells were exposed to X-ray irradiation and then RNF2 levels were determined. RNF2 was knocked-down and stable transfectants were selected. Radiosensitivity, cell proliferation, apoptosis, cell cycle, and γ-H2AX foci formation were evaluated. Interaction among ataxia telangiectasia mutated protein (ATM), mediator of DNA damage checkpoint 1 (MDC1), and H2AX were examined. Xenograft models were used to explore the effect of RNF2 knockdown on radiosensitivity in vivo. The results showed that RNF2 expression was significantly increased by X-ray irradiation. RNF2 knockdown combined with X-ray irradiation markedly inhibited cell proliferation, caused cell cycle arrest at the G1 phase, and induced cell apoptosis. In addition, RNF2 knockdown enhanced the radiosensitivity of SqCC cells, inhibited irradiation-induced γ-H2AX foci formation, and impaired the interactions among ATM, MDC1, and H2AX. Furthermore, combination of RNF2 knockdown and X-ray irradiation suppressed tumor growth and promoted tumor cell apoptosis in vivo. RNF2 may be a new therapeutic target to enhance the radiosensitivity of SqCC cells in lung.


2021 ◽  
Author(s):  
Xinning Liu ◽  
Yanan Jiang ◽  
Hao Zhou ◽  
Mingzhu Li ◽  
Zhuo Bao ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) is a high recurrence rate of upper-digestive cancer with a low 5-year survival rate. Therefore, there is an urgent need for effective chemopreventive drugs that can extend the survival rate of patients. Through screening of FDA-approved drugs, dasabuvir was found to suppress ESCC proliferation. Methods: Cell number count assay was used to screen for drugs with inhibitory effect on ESCC cells and detect the inhibitory effect of dasabuvir on proliferation of ESCC cells KYSE150 and KYE450. Phosphoproteomics and proteomics were used to investigate the mechanism of dasabuvir inhibiting ESCC. In vitro kinase assay was used to verify the inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activation by ROCK1 by dasabuvir. The PDX model was used to test the inhibitory effect of dasabuvir on ESCC in vivo.Results: In this study, we found that dasabuvir is a novel inhibitor of Rho-associated protein kinase 1 (ROCK1). Dasabuvir inhibited the growth of the KYSE150 and KYSE450 ESCC cell lines in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was validated in vivo using a patient-derived xenograft tumor model in mice. Dasabuvir inhibited the activation of ERK1/2 by ROCK1 and downregulated cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Conclusions: These results provide the first evidence that dasabuvir serves as a ROCK1 inhibitor, suppresses ESCC growth in vivo and in vitro, and arrests the cell cycle through the ROCK1/ERK signaling pathway.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jian-Xing Wang ◽  
Xin-Ju Jia ◽  
Yan Liu ◽  
Jin-Hui Dong ◽  
Xiu-Min Ren ◽  
...  

Abstract Background Increasing evidence has suggested that microRNAs (miRNAs) act as key post-transcriptional regulators in tumor progression. Previous studies have confirmed that miR-17-5p functions as an oncogene in multiple cancers and contributes to tumor progression. However, the role and biological functions of miR-17-5p in the development of laryngeal squamous cell carcinoma (LSCC) still remain unknown. Methods qRT-PCR was used to detect miRNA and mRNA expression levels in LSCC tissues and cell lines. CCK-8 assay was used to measure cell viability and flow cytometry was performed to evaluate cell apoptosis. Western blot analysis was used to detect the protein levels of BAX, BCL-2, cleaved Caspase-3, PIK3R1 and AKT. Luciferase reporter assay was used to detect the effect of miR-17-5p on PIK3R1 expression. Xenograft animal model was used to test the effect of miR-17-5p on LSCC cell in vivo. Results In the present study, we found that miR-17-5p expression level was upregulated in LSCC tissues and cell lines. Depletion of miR-17-5p in LSCC cells significantly reduced cell proliferation and promoted cell apoptosis in vitro and in vivo. Mechanically, knockdown of miR-17-5p in LSCC cells inhibited BCL-2 expression while enhanced BAX and cleaved Caspase-3 protein expression. Moreover, depletion of miR-17-5p in LSCC cells suppressed AKT phosphorylation but did not influence PTEN expression. Importantly, miR-17-5p positively regulated PIK3R1 expression by directly binding to its 3′-untranslated region (UTR). Additionally, PIK3R1, which expression was downregulated in LSCC tissues and cell lines, was involved in LSCC cell survival by modulating the activation of AKT signal pathway. Dysregulation of miR-17-5p/PIK3R1 axis was participated in LSCC cell proliferation and apoptosis by inhibiting the activation of the PI3K/AKT signaling pathway. Conclusions In conclusion, our study indicates that the miR-17-5p/PIK3R1 axis plays an essential role in the development of LSCC and provides a potential therapeutic target for LSCC treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yi Zhang ◽  
Kaisai Tian ◽  
Enhui Zhou ◽  
Xiaocheng Xue ◽  
Shiling Yan ◽  
...  

Recently, circular RNAs have been shown to function as critical regulators of many human cancers. However, the circRNA mechanism in laryngeal squamous cell carcinoma (LSCC) remains elusive. Recent investigations using bioinformatics analysis revealed high expression of hsa_circ_0023305 in LSCC tissues compared to normal tissues. Furthermore, we discovered that hsa_circ_0023305 expression level was positively correlated to tumor/node/metastasis (TNM) stage as well as lymph node metastasis in LSCC. Moreover, higher hsa_circ_0023305 levels were correlated to poorer LSCC patient outcomes. Knockdown of hsa_circ_0023305 significantly inhibited LSCC cell proliferation, invasion, and migration abilities. Our team validated that hsa_circ_0023305 functioned as a miR-218-5p sponge from a mechanistic perspective, targeting the melastatin-related transient receptor potential 7 (TRPM7) in LSCC cells. TRPM7 regulates a nonselective cation channel and promotes cancer proliferation and metastasis. Our data demonstrated that miR-218-5p was downregulated in LSCC and that miR-218-5p upregulation repressed LSCC proliferation and invasion both in vivo and in vitro. Additionally, we found that hsa_circ_0023305-mediated upregulation of TRPM7 inhibited miR-218-5p and contributed to LSCC migration, proliferation, and invasion. In summary, these data propose a new mechanism by which the hsa_circ_0023305/miR-218-5p/TRPM7 network enhances LSCC progression.


2018 ◽  
Vol 96 (6) ◽  
pp. 752-760 ◽  
Author(s):  
Jun-Tao Niu ◽  
Li-Jun Zhang ◽  
Yong-Wang Huang ◽  
Chao Li ◽  
Ning Jiang ◽  
...  

MicroRNAs are critical regulators of the development and progression of laryngeal squamous cell carcinoma (LSCC). However, the role of microRNA-154 (miR-154) in the development and progression of LSCC has not been clarified. We found that down-regulated miR-154 expression in LSCC tissues was associated with poorer prognosis in LSCC patients. MiR-154 over-expression inhibited the proliferation, clonogenicity, and migration of LSCC cells and induced cell cycle arrest, which were reversed by miR-154 inhibition. MiR-154 targeted GALNT7 expression by reducing GALNT7-regulated luciferase activity in LSCC cells while up-regulating GALNT7 mRNA transcription in LSCC tissues and cells. GALNT7 silencing significantly attenuated the proliferation, clonogenicity, and migration of LSCC cells and induced cell cycle arrest. Finally, intravenous treatment with lentivirus for miR-154, but not scrambled control miRNA, significantly restrained the growth of implanted LSCC Hep-2 tumors and decreased the tumor mass by reducing GALNT7 expression in mice. Therefore, miR-154 may serve as a novel prognostic marker and therapeutic target for LSCC.


Sign in / Sign up

Export Citation Format

Share Document