scholarly journals Purified Vitexin Compound 1 Serves as a Promising Antineoplastic Agent in Ovarian Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Kewen Ma ◽  
Kuansong Wang ◽  
Yingjun Zhou ◽  
Nian Liu ◽  
Wei Guo ◽  
...  

Ovarian cancer is a common gynecologic aggressive neoplasm. The mortality of ovarian cancer is top among gynecologic malignancies due to the insidious onset, atypical early symptoms, and chemoresistance. Therefore, it is urgent to seek another promising treatment for ovarian cancer. Purified vitexin compound 1 (VB1) is a kind of neolignan from the seed of traditional Chinese herb vitex negundo that possessed diverse pharmacological effects. VB1 can exhibit anti-neoplastic activities against various cancers. However, the role of VB1 in ovarian cancer treatment has not been elaborated, and the mechanism is unknown. The aim of this study was to investigate the therapeutic effects of VB1 in ovarian cancer cells both in vitro and in vivo, along with the molecular mechanism of action. In vitro, VB-1 can effectively suppress the proliferation, induce apoptosis, and block cell cycle at G2/M phase with a concentration dependent manner in ovarian cancer cells. Western blot assay showed that VB1 induce apoptosis via upregulating expression of cleaved-caspase3 and block cell cycle at G2/M phase through upregulating expression of P21. Meanwhile, VB1 can effectively inhibit tumor growth in xenograft mouse model. Our research indicated that VB1 can significantly exert its anti-neoplastic effects and may represent a new class of agents in ovarian cancer therapy.

Author(s):  
Liguang Zhou ◽  
Jing Liu ◽  
Wen Meng ◽  
Huawei Zhang ◽  
Bo Chen

Background: The anticancer activity of silibinin (SB) has been demonstrated in various cancer cell types. However, its low solubility and poor bioavailability limit its clinical potential in biomedical applications. Microbubbles in combination with ultrasound are promising vehicles for local drug delivery. Objective: The present study determined the antitumour effects and molecular mechanism of silibinin-loaded microbubbles (SBMBs) in combination with ultrasound on ovarian cancer in vitro. Methods: SBMBs were prepared using mechanical vibration. The viability of A2780 cells was determined using the MTT assay. Flow cytometry was performed to detect cell apoptosis and the cell cycle. The expression of receptor tyrosine kinase (RTK)-associated downstream proteins was detected using multiplex assays and Western blots. Results: The present study designed and synthesized SBMBs. SBMBs in combination with ultrasound decreased A2780 cell viability in a dose- and time-dependent manner. The half maximal inhibitory concentration (IC50) showed that the cytotoxicity of the SBMBs was approximately 1.5 times greater than that of the SB in A2780 cells. SBMBs in combination with ultrasound resulted in significantly higher apoptosis efficiency compared to the SB group, and the SBMB population of cells was arrested in the G1/G0 phase. Further experiments demonstrated that SBMBs decreased the expression of signal transducer and activator of transcription 3 (STAT3), Ak strain transforming (AKT), and extracellular signal-regulated kinase (Erk) and had a greater effect than SB in A2780 cells. Inhibitors of AKT, Erk and STAT3 promoted the cytotoxicity of SBMBs. Conclusion: SBMBs in combination with ultrasound may enhance the cytotoxicity efficiency of SB via the promotion of apoptosis and cell cycle arrest in ovarian cancer cells and the inactivation of the STAT3, AKT and Erk signalling pathways.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


2013 ◽  
Vol 25 (1) ◽  
pp. 244
Author(s):  
K.-A. Hwang ◽  
K.-C. Choi

One of estrogens in the body, 17β-oestradiol (E2), is a pleiotropic hormone that regulates the growth and differentiation of many tissues and also acts as a mitogen that promotes the development and proliferation of hormone-responsive cancers such as breast and ovarian carcinomas. Xenoestrogens are chemical compounds that imitate oestrogen in living organisms and are classified as a type of endocrine-disrupting chemical (EDC). Bisphenol A (BPA) is a widely used industrial compound, and also known as an EDC and especially a xenoestrogen. In this study, we examined the effect of E2 or BPA on the cell growth of BG-1 ovarian cancer cells in vivo and in vitro. In the cell proliferation assay in vitro, E2 or BPA increased the growth of the BG-1 ovarian cancer cells expressing oestrogen receptors (ER). Their proliferation activity was reversed by the treatment of ICI 182 780, a well-known antagonist of ER, which demonstrates that the cell proliferation by E2 or BPA is mediated by ER and BPA certainly acts as a xenoestrogen in the BG-1 ovarian cancer cells. Clearly, E2 and BPA increased the expression of cyclin D1, a factor responsible for the G1/S cell cycle transition. These reagents also decreased the expression of p21, a potent cyclin-dependent kinase (CDK) inhibitor that arrests the cell cycle in the G1 phase. As a result, they promoted the proliferation of BG-1 cells via upregulation of the cell cycle progression. In mice xenograft models transplanted with BG-1 ovarian cancer cells, E2 or BPA administration significantly induced the tumour proliferation compared with vehicle (corn oil) treatment for 10 weeks, which was identified by the measurement of tumour volume and histological analysis on tumour tissues such as hematoxylin and eosin (H&E) staining and BrdU incorporation assay. Taken together, as an EDC having a xenoestrogenic activity, BPA was demonstrated to have a risk of tumour proliferation in oestrogen-dependent cancers such as ovarian cancer. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) of government of Korea (no. 2011-0015385).


2013 ◽  
Vol 10 (48) ◽  
pp. 9888-9897 ◽  
Author(s):  
He Jian ◽  
He Xu ◽  
Zhang Hai ying ◽  
Yang Xu fang ◽  
He Jin ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Li-Hua Gong ◽  
Xiu-Xiu Chen ◽  
Huan Wang ◽  
Qi-Wei Jiang ◽  
Shi-Shi Pan ◽  
...  

Piperlongumine (PL), a natural alkaloid fromPiper longum L., possesses the highly selective and effective anticancer property. However, the effect of PL on ovarian cancer cells is still unknown. In this study, we firstly demonstrate that PL selectively inhibited cell growth of human ovarian cancer cells. Furthermore, PL notably induced cell apoptosis, G2/M phase arrest, and accumulation of the intracellular reactive oxidative species (ROS) in a dose- and time-dependent manner. Pretreatment with antioxidant N-acety-L-cysteine could totally reverse the PL-induced ROS accumulation and cell apoptosis. In addition, low dose of PL/cisplatin or paclitaxel combination therapies had a synergistic antigrowth effect on human ovarian cancer cells. Collectively, our study provides new therapeutic potential of PL on human ovarian cancer.


2016 ◽  
Vol 26 (9) ◽  
pp. 1557-1563 ◽  
Author(s):  
Jian-ming Tang ◽  
Jie Min ◽  
Bing-shu Li ◽  
Sha-sha Hong ◽  
Cheng Liu ◽  
...  

AimThe aim of this study was to investigate the effects of punicalagin, a polyphenol isolated from Punica granatum, on human A2780 ovarian cancer cells in vitro.MethodsThe viability of human A2780 ovarian cells was evaluated using Cell Counting Kit-8 assay. Cell cycle was detected with flow cytometry analysis. The protein expression levels of Bcl-2, Bax, β-catenin, cyclin D1, survivin, tissue inhibitor of metalloproteinase (TIMP)-2, and TIMP-3 were measured using Western blot analysis. Matrix metalloproteinase (MMP)-2 and MMP-9 activity was determined with gelatin zymography. Wound healing assay was used to determine cell migration.ResultsPunicalagin inhibited the cell viability of A2780 cells in a dose- and time-dependent manner, and the cell cycle of A2780 cells was arrested in G1/S phase transition. The treatment also induced apoptosis as shown by the up-regulation of Bax and down-regulation of Bcl-2. On the other hand, punicalagin treatment increased the expressions of TIMP-2 and TIMP-3, decreased the activities of MMP-2 and MMP-9, and inhibited cell migration. In addition, the β-catenin pathway was suppressed as shown by the down-regulations of β-catenin and its downstream factors including cyclin D1 and survivin.ConclusionsPunicalagin may have cancer-chemopreventive as well as cancer-chemotherapeutic effects against human ovarian cancer in humans through the inhibition of β-catenin signaling pathway.


2020 ◽  
Author(s):  
hanwei cui ◽  
Qian Yi ◽  
Min Tian ◽  
Yuteng Liang ◽  
Jie Huang ◽  
...  

Abstract BackgroundAdenosine (A)-to-inosine (I) RNA editing is the most prevalent RNA editing mechanism, in which adenosine deaminases acting on RNA 1 (ADAR1) is a major adenosine deaminase. Increasing evidence suggests that editing dysregulation of ADAR1 plays an important role in human tumorigenesis, while the underlying mechanism remains elusive. MethodsThe clinical relevance of ADAR1 was analyzed by real-time PCR, western blotting and immunohistochemistry of ovarian cancer tissues. ADAR1 function on ovarian cancer cells in vitro were explored by colony formation assay, transwell assay and Brdu-based cell cycle assay in vitro and xenograft models in vivo. Western blotting, immunostaining and DNA/RNA immunoprecipitation-qPCR were conducted to confirm DNA damage and R-loop accumulation in ovarian cancer cells. Co-immunoprecipitation and DNA/RNA immunoprecipitation were performed to detect interaction of DHX9, ADAR1 and R-loop complex in ovarian cancer cells.ResultsWe demonstrated that ADAR1 was highly expressed in ovarian cancer tissues and negatively correlated with progression free survival of ovarian cancer patients. Importantly, silence of ADAR1 repressed ovarian cancer cell growth and colony formation in vitro and inhibited ovarian cancer cell tumorigenesis in vivo. Further cell cycle and transcriptome profile analysis revealed that silence of ADAR1 in ovarian cancer cells induced cell cycle arrest at G1/G0 stage. Mechanically, loss of ADAR1 caused R-loop abnormal accumulation, thereby contributing to single stand DNA break and ATR pathway activation. Additionally, ADAR1 interacted with DHX9 to regulate R-loop complex formation, and A-to-I editing of nascent RNA repressed R-loop formation during co-transcriptional process. ConclusionsOur results identify a novel ADAR1/R-loop/ATR axis critical for ovarian cancer progression and a potential target for ovarian cancer therapy.


2020 ◽  
Vol 20 (13) ◽  
pp. 1530-1537 ◽  
Author(s):  
Santhosh Arul ◽  
Harinee Rajagopalan ◽  
Jivitesh Ravi ◽  
Haripriya Dayalan

Background: Ovarian cancer is the fifth most common cause of cancer deaths among women with lesser prognostics. Current treatment options are chemotherapy with platinum and taxane based chemotherapy. β-Caryophyllene (BCP) an essential oil found in many plant species is known to possess an anti-proliferative effect. Objective: We aimed to investigate the antiproliferative, cytotoxic, and apoptotic role of BCP against ovarian cancer cells PA-1 and OAW 42. Methods: The antiproliferative effect of BCP was determined by MTT assay and cell viability by trypan blue exclusion assay. Cell cycle and live/dead cell analyses were performed by flow cytometry to determine cell cycle distribution and apoptosis, respectively. Results: Results of MTT assay proved the anti-proliferative effect of BCP in a dose and time-dependent manner in ovarian cancer cells. Cell cycle analysis showed that BCP induced S Phase arrest in OAW 42 cells. Results of apoptosis assay confirmed the apoptosis inducing potential of BCP in ovarian cancer cells. The apoptosis is mediated by caspase-3 activation and PARP cleavage. Conclusion: The results of our present study prove that BCP exerts its action partly by inducing cell cycle arrest and apoptosis in ovarian cancer. We conclude that BCP is a potential anti-cancer agent.


Sign in / Sign up

Export Citation Format

Share Document