scholarly journals Identification of Novel Drug Candidate for Epithelial Ovarian Cancer via In Silico Investigation and In Vitro Validation

2021 ◽  
Vol 11 ◽  
Author(s):  
Dan Zou ◽  
Jin Bai ◽  
Enting Lu ◽  
Chunjiao Yang ◽  
Jiaqing Liu ◽  
...  

Epithelial ovarian cancer (EOC) has a poor prognosis and high mortality rate; patients are easy to relapse with standard therapies. So, there is an urgent need to develop novel drugs. In this study, differentially expressed genes (DEGs) of EOC were identified in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Enrichment and protein–protein interaction (PPI) analyses were performed. The drug candidate which has the possibility to treat EOC was predicted by Connectivity Map (CMAP) databases. Moreover, molecular docking was selected to calculate the binding affinity between drug candidate and hub genes. The cytotoxicity of drug candidates was assessed by MTT and colony formation analysis, the proteins coded by hub genes were detected by Western blots, and apoptosis analysis was evaluated by flow cytometry. Finally, 296 overlapping DEGs (|log 2 fold change|>1; q-value <0.05), which were principally involved in the cell cycle (p < 0.05), and cyclin-dependent kinase 1 (CDK1) were screened as the significant hub gene from the PPI network. Furthermore, the 21 drugs were extracted from CMAPs; among them, piperlongumine (PL) showed a lower CMAP score (-0.80, -62.92) and was regarded as the drug candidate. Furthermore, molecular docking results between PL and CDK1 with a docking score of –8.121 kcal/mol were close to the known CDK1 inhibitor (–8.24 kcal/mol). Additionally, in vitro experiments showed that PL inhibited proliferation and induced apoptosis via targeting CDK1 in EOC SKOV3 cells. Our results reveal that PL may be a novel drug candidate for EOC by inhibiting cell cycle.

Author(s):  
Liguang Zhou ◽  
Jing Liu ◽  
Wen Meng ◽  
Huawei Zhang ◽  
Bo Chen

Background: The anticancer activity of silibinin (SB) has been demonstrated in various cancer cell types. However, its low solubility and poor bioavailability limit its clinical potential in biomedical applications. Microbubbles in combination with ultrasound are promising vehicles for local drug delivery. Objective: The present study determined the antitumour effects and molecular mechanism of silibinin-loaded microbubbles (SBMBs) in combination with ultrasound on ovarian cancer in vitro. Methods: SBMBs were prepared using mechanical vibration. The viability of A2780 cells was determined using the MTT assay. Flow cytometry was performed to detect cell apoptosis and the cell cycle. The expression of receptor tyrosine kinase (RTK)-associated downstream proteins was detected using multiplex assays and Western blots. Results: The present study designed and synthesized SBMBs. SBMBs in combination with ultrasound decreased A2780 cell viability in a dose- and time-dependent manner. The half maximal inhibitory concentration (IC50) showed that the cytotoxicity of the SBMBs was approximately 1.5 times greater than that of the SB in A2780 cells. SBMBs in combination with ultrasound resulted in significantly higher apoptosis efficiency compared to the SB group, and the SBMB population of cells was arrested in the G1/G0 phase. Further experiments demonstrated that SBMBs decreased the expression of signal transducer and activator of transcription 3 (STAT3), Ak strain transforming (AKT), and extracellular signal-regulated kinase (Erk) and had a greater effect than SB in A2780 cells. Inhibitors of AKT, Erk and STAT3 promoted the cytotoxicity of SBMBs. Conclusion: SBMBs in combination with ultrasound may enhance the cytotoxicity efficiency of SB via the promotion of apoptosis and cell cycle arrest in ovarian cancer cells and the inactivation of the STAT3, AKT and Erk signalling pathways.


2020 ◽  
Author(s):  
Lan Dai ◽  
Keqi Song ◽  
Wenjing Wang ◽  
Yixuan Liu ◽  
Wen Di

Abstract Background: Epithelial ovarian cancer (EOC) is the leading cause of death from female cancers. In our previous study, Sphingosine kinase 2 (SphK2) inhibitor was shown to display anti-EOC activities. The purpose of this study was to further evaluate the expression characteristics and clinical significance of SphK2 in EOC, and to explore the roles and underlying mechanisms of SphK2 in EOC cell survival.Methods: SphK2 expression was examined by Immunohistochemistry and western blot, and its clinical implications and prognostic significance were analyzed. Cellular proliferation assay and mouse xenograft model was established to confirm the roles of SphK2 in vitro and in vivo. Cell cycle analysis, apoptosis assay and western blot were performed to examine cell cycle progression and apoptosis rate. Gene set enrichment analysis (GSEA) and western blot was used to investigate the downstream signaling pathways related to SphK2 function.Results: SphK2 expression level was shown to be associated with stage, histological grade, lymph node metastasis and ascite status. More importantly, high SphK2 expression level was a prognostic indicator of overall survival and relapse-free survival. Moreover, knockdown of SphK2 arrested cell cycle progression and inhibited the proliferation of EOC cells both in vitro and in vivo. Furthermore, ERK/c-Myc, the key pathway in EOC progression, was important for SphK2-mediated mitogenic action in EOC cells.Conclusion: Our findings provided the first evidence that SphK2 played a crucial role in EOC proliferation by regulating ERK/c-Myc pathway. SphK2 may serve as a prognostic marker and potential therapeutic target in EOC.


2017 ◽  
Vol 43 (2) ◽  
pp. 589-601 ◽  
Author(s):  
Jiaojiao Zhao ◽  
Yuchen Pan ◽  
Xiujun Li ◽  
Xuefang Zhang ◽  
Yaxian Xue ◽  
...  

Background/Aim: Women with advanced ovarian carcinoma are less likely to receive platinum-based chemotherapy and surgery due to a greater risk of cytotoxicity and poorer outcomes. We attempted to improve a promising therapy against ovarian cancer by using a combination of dihydroartemisinin (DHA) and curcumin (Cur). Methods: Human ovarian cancer SKOV3 cells were treated with DHA, Cur alone, or a combination of both. The viability of SKOV3 cells was measured by Cell Counting Kit-8 (CCK-8) and a colony formation assay. The cell cycle and apoptosis of SKOV3 cells were monitored by flow cytometry. The mRNA and protein expression levels of target genes were respectively examined by qRT-PCR and western blot. The biological effects of miR-124 on midkine (MK) were verified by a luciferase activity analysis. Results: Combined treatment of DHA and Cur synergistically decreased cell viability, arrested cell cycle, and promoted apoptosis in SKOV3 cells. Moreover, it significantly attenuated the expression of oncogene MK and synergistically upregulated the expression of miR-124. Furthermore, miR-124 was verified to bind directly to the 3ʹ-untranslated region of MK mRNA, resulting in mRNA degradation and reduced MK protein levels. The combination of DHA with Cur significantly inhibited tumor growth in xenograft nude mice without obvious toxicity. Conclusion: Co-treatment with DHA and Cur exhibited a synergistic anti-tumor effect on SKOV3 cells both in vitro and in vivo.


2020 ◽  
Vol 13 (10) ◽  
pp. 315
Author(s):  
Maritza P. Garrido ◽  
Renato Salvatierra ◽  
Manuel Valenzuela-Valderrama ◽  
Christopher Vallejos ◽  
Nicole Bruneau ◽  
...  

Epithelial ovarian cancer (EOC) is a lethal gynaecological neoplasm characterized by rapid growth and angiogenesis. Nerve growth factor (NGF) and its high affinity receptor tropomyosin receptor kinase A (TRKA) contribute to EOC progression by increasing the expression of c-MYC, survivin and vascular endothelial growth factor (VEGF) along with a decrease in microRNAs (miR) 23b and 145. We previously reported that metformin prevents NGF-induced proliferation and angiogenic potential of EOC cells. In this study, we sought to obtain a better understanding of the mechanism(s) by which metformin blocks these NGF-induced effects in EOC cells. Human ovarian surface epithelial (HOSE) and EOC (A2780/SKOV3) cells were stimulated with NGF and/or metformin to assess the expression of c-MYC, β-catenin, survivin and VEGF and the abundance of the tumor suppressor miRs 23b and 145. Metformin decreased the NGF-induced transcriptional activity of MYC and β-catenin/T-cell factor/lymphoid enhancer-binding factor (TCF-Lef), as well as the expression of c-MYC, survivin and VEGF in EOC cells, while it increased miR-23b and miR-145 levels. The preliminary analysis of ovarian biopsies from women users or non-users of metformin was consistent with these in vitro results. Our observations shed light on the mechanisms by which metformin may suppress tumour growth in EOC and suggest that metformin should be considered as a possible complementary therapy in EOC treatment.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 519
Author(s):  
Eleni Anastasiadou ◽  
Elena Messina ◽  
Tiziana Sanavia ◽  
Lucia Mundo ◽  
Federica Farinella ◽  
...  

Conventional/targeted chemotherapies and ionizing radiation (IR) are being used both as monotherapies and in combination for the treatment of epithelial ovarian cancer (EOC). Several studies show that these therapies might favor oncogenic signaling and impede anti-tumor responses. MiR-200c is considered a master regulator of EOC-related oncogenes. In this study, we sought to investigate if chemotherapy and IR could influence the expression of miR-200c-3p and its target genes, like the immune checkpoint PD-L1 and other oncogenes in a cohort of EOC patients’ biopsies. Indeed, PD-L1 expression was induced, while miR-200c-3p was significantly reduced in these biopsies post-therapy. The effect of miR-200c-3p target genes was assessed in miR-200c transfected SKOV3 cells untreated and treated with olaparib and IR alone. Under all experimental conditions, miR-200c-3p concomitantly reduced PD-L1, c-Myc and β-catenin expression and sensitized ovarian cancer cells to olaparib and irradiation. In silico analyses further confirmed the anti-correlation between miR-200c-3p with c-Myc and β-catenin in 46 OC cell lines and showed that a higher miR-200c-3p expression associates with a less tumorigenic microenvironment. These findings provide new insights into how miR-200c-3p could be used to hold in check the adverse effects of conventional chemotherapy, targeted therapy and radiation therapy, and offer a novel therapeutic strategy for EOC.


2014 ◽  
Vol 24 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Qiaoying Zhu ◽  
Jianming Hu ◽  
Huijuan Meng ◽  
Yufei Shen ◽  
Jinhua Zhou ◽  
...  

ObjectiveAplasia Ras homolog member I (ARHI) is associated with human ovarian cancer (HOC) growth and proliferation; however, the mechanisms are unclear. The purpose of this study was to investigateARHIeffects in HOC SKOV3 cells.MethodsWe transfected SKOV3 cells with PIRES2-EGFP-ARHI and measured growth inhibition rates, cell cycle distribution, apoptosis rates, and expression of P-STAT3 (phosphorylated signal transduction and activators of transcription 3) and P-ERK (phosphorylated extracellular signal regulated protein kinase).ResultsOur data showed significant inhibition of growth, significantly increased S-phase arrest and apoptosis rates, and reduction of P-STAT3 and P-ERK1/2 expression levels.ConclusionsWe propose the mechanism may involveARHI-induced phosphorylation of ERK1/2 and STAT3 protein kinases, thereby blocking proliferation signaling pathways, to induce HOC SKOV3 apoptosis.


2021 ◽  
Author(s):  
John Robert Cornelison ◽  
Ettore J. Rastelli ◽  
Duncan J. Hart ◽  
Anna J. Mendelson ◽  
Elizabeth R. Sharlow ◽  
...  

2018 ◽  
Vol 13 (2) ◽  
pp. 149 ◽  
Author(s):  
Naureen Shehzadi ◽  
Khalid Hussain ◽  
Nadeem Irfan Bukhari ◽  
Muhammad Islam ◽  
Muhammad Tanveer Khan ◽  
...  

<p class="Abstract">The present study aimed at the evaluation of anti-hyperglycemic and hepatoprotective potential of a new drug candidate, 5-[(4-chlorophenoxy) methyl]-1,3,4-oxadiazole-2-thiol (OXCPM) through in vitro and in vivo assays, respectively. The compound displayed excellent dose-dependent ɑ-amylase (28.0-92.0%), ɑ-glucosidase (40.3-93.1%) and hemoglobin glycosylation (9.0%-54.9%) inhibitory effects and promoted the uptake of glucose by the yeast cells (0.2 to 26.3%). The treatment of the isoniazid- and rifampicin- (p.o., 50 mg/kg of each) intoxicated rats with OXCPM (100 mg/kg, p.o.) resulted in restoring the normal serum levels of the non-enzymatic (total bilirubin, total protein and albumin) and bringing about a remarkable decrease in the levels of enzymatic (alanine transaminases, aspartate transaminases and alkaline phosphatase) biomarkers. The molecular docking studies indicated high binding affinity of the compound for hyperglycemia-related protein targets; fructose-1,6-bisphosphatase, beta<sub>2</sub>-adrenergic receptors and glucokinase. The results indicate that OXCPM may not only reduce hyperglycemia by enzyme inhibition but also the disease complications through protection of hemoglobin glycosylation and hepatic injury.</p><p class="Abstract"><strong>Video Clip of Methodology:</strong></p><p class="Abstract">Glucose uptake by yeast cells:   4 min 51 sec   <a href="https://www.youtube.com/v/8cJkuMtV0Wc">Full Screen</a>   <a href="https://www.youtube.com/watch?v=8cJkuMtV0Wc">Alternate</a></p>


Sign in / Sign up

Export Citation Format

Share Document