scholarly journals Case Report: Exome Sequencing Identified a Novel Frameshift Mutation of α-Actin 1 in a Chinese Family With Macrothrombocytopenia and Mild Bleeding

2021 ◽  
Vol 9 ◽  
Author(s):  
Fang-Mei Luo ◽  
Liang-Liang Fan ◽  
Yue Sheng ◽  
Yi Dong ◽  
Lv Liu

Inherited macrothrombocytopenia (IMTP) is a rare disorder characterized by a reduced platelet count and abnormally large platelets. The main clinical symptom of IMTP is mild bleeding in some patients. At present, more than 30 genes have been identified in patients with syndromic and non-syndromic IMTP. In this study, a 3-year-old boy and his mother who presented with mild epistaxis and/or gingival bleeding were diagnosed as having IMTP. Wen then selected whole sequencing to explore the genetic lesion of the patients. After data filtering and mutation validation, a novel frameshift mutation (NM_001130004: c.398_399insTGCG, p.F134AfsX60) of α-actin 1 (ACTN1) was identified in the proband and his mother but absent in other unaffected individuals. Previous studies have proven that mutations in ACTN1 may lead to IMTP with mild to absent bleeding phenotype. The novel mutation, resulting in a truncated protein in exon 4 of the ACTN1 gene, was absent in the public database, such as 1000G and genomAD. Further Western blot revealed that the expression of α-actin 1 in the proband was decreased overtly, which indicated that the novel frameshift mutation may induce non-sense-mediated mRNA decay. In summary, this study not only broadened the variants spectrum of ACTN1 gene, which may contribute to the genetic counseling of IMTP, but also confirmed the diagnosis of IMTP, which may help the management and prognosis for the family members.

2020 ◽  
Author(s):  
Xin Jin ◽  
Wei Liu ◽  
HouBin Huang

Abstract Background: Aniridia is a kind of congenital human panocular anomaly, which is related to PAX6 commonly. Methods: A Chinese Aniridia pedigree underwent ophthalmic examinations, including visual acuity, slit lamp and fundoscopy examination. The targeted next-generation sequencing of Aniridia genes was used to identify the causative mutation. Results: A novel heterozygous PAX6 nonsense mutation c.619A>T (p.K207*) was identified in the Chinese autosomal dominant family with aniridia. Phenotypes related to the novel mutation include nystagmus, iris defect, cataract and absence of macular fovea. Conclusion: The novel nonsense mutation in PAX6 was responsible for aniridia phenotype in the family. which expands the spectrum of the PAX6 mutation and its associated phenotype.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yu-Liang Jiang ◽  
Xiao-Dong Xu ◽  
Bai-Rong Li ◽  
En-Da Yu ◽  
Zi-Ye Zhao ◽  
...  

Abstract Objective To report Peutz–Jeghers syndrome (PJS) cases with non-definitive clues in the family or personal history and finally diagnosed through pathological examination and STK11 gene mutation test. Clinical presentation and intervention PJS was suspected in 3 families with tortuous medical courses. Two of them had relatives departed due to polyposis or colon cancer without pathological results, and the other one had been diagnosed as hyperplastic polyposis before. Diagnosis of PJS was confirmed by endoscopy and repeated pathological examinations, and the STK11 mutation test finally confirmed the diagnosis at genetic level, during which 3 novel mutation were detected (536C > A, 373_374insA, 454_455insGGAGAAGCGTTTCCCAGTGTGCC). Conclusion Early diagnosis of PJS is important and may be based on a family history with selective features among family members, and the pathological information is the key. The novel mutations also expand the STK11 variant spectrum.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Chunli Wei ◽  
Ting Xiao ◽  
Jingliang Cheng ◽  
Jiewen Fu ◽  
Qi Zhou ◽  
...  

Abstract As a genetically heterogeneous ocular dystrophy, gene mutations with autosomal recessive retinitis pigmentosa (arRP) in patients have not been well described. We aimed to detect the disease-causing genes and variants in a Chinese arRP family. In the present study, a large Chinese pedigree consisting of 31 members including a proband and another two patients was recruited; clinical examinations were conducted; next-generation sequencing using a gene panel was used for identifying pathogenic genes, and Sanger sequencing was performed for verification of mutations. Novel compound heterozygous variants c.G2504A (p.C835Y) and c.G6557A (p.G2186E) for the EYS gene were identified, which co-segregated with the clinical RP phenotypes. Sequencing of 100 ethnically matched normal controls didn’t found these mutations in EYS. Therefore, our study identified pathogenic variants in EYS that may cause arRP in this Chinese family. This is the first study to reveal the novel mutation in the EYS gene (c.G2504A, p.C835Y), extending its mutation spectrum. Thus, the EYS c.G2504A (p.C835Y) and c.G6557A (p.G2186E) variants may be the disease-causing missense mutations for RP in this large arRP family. These findings should be helpful for molecular diagnosis, genetic counseling and clinical management of arRP disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bing-Bing Guo ◽  
Jie-Yuan Jin ◽  
Zhuang-Zhuang Yuan ◽  
Lei Zeng ◽  
Rong Xiang

Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia with an estimated incidence of ~1/60000 that is characterized by disproportionate short stature, brachydactyly, joint laxity, and early-onset osteoarthritis. COMP encodes the cartilage oligomeric matrix protein, which is expressed predominantly in the extracellular matrix (ECM) surrounding the cells that make up cartilage, ligaments, and tendons. Mutations in COMP are known to give rise to PSACH. In this study, we identified a novel nucleotide mutation (NM_000095.2: c.1317C>G, p.D439E) in COMP responsible for PSACH in a Chinese family by employing whole-exome sequencing (WES) and built the structure model of the mutant protein to clarify its pathogenicity. The novel mutation cosegregated with the affected individuals. Our study expands the spectrum of COMP mutations and further provides additional genetic testing information for other PSACH patients.


Cephalalgia ◽  
2019 ◽  
Vol 39 (11) ◽  
pp. 1382-1395
Author(s):  
Wenjing Tang ◽  
Meichen Zhang ◽  
Enchao Qiu ◽  
Shanshan Kong ◽  
Yingji Li ◽  
...  

Background ATP1A2 has been identified as the genetic cause of familial hemiplegic migraine type 2. Over 80 ATP1A2 mutations have been reported, but no data from Chinese family studies has been included. Here, we report the first familial hemiplegic migraine type 2 Chinese family with a novel missense mutation. Methods Clinical manifestations in the family were recorded. Blood samples from patients and the unaffected members were collected for whole-exome sequencing to identify the pathogenic mutation. Seven online softwares (SIFT, PolyPhen-2, PROVEAN, PANTHER, MutationTaster2, MutationAssessor and PMut) were used for predicting the pathogenic potential of the mutation. PredictProtein, Jpred 4 and PyMOL were used to analyze structural changes of the protein. The mutation function was further tested by Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Results All patients in the family had typical hemiplegic migraine attacks. Co-segregation of the mutation with the migraine phenotype in four generations, with 10 patients, was completed. The identified novel mutation, G762S in ATP1A2, exhibited the disease-causing feature by all the predictive softwares. The mutation impaired the local structure of the protein and decreased cell viability. Conclusion G762S in ATP1A2 is a novel pathogenic mutation identified in a Chinese family with familial hemiplegic migraine, which causes loss of function by changing the protein structure of the Na+/K+-ATPase α2 subunit.


2021 ◽  
Vol 21 (3) ◽  
pp. 1426
Author(s):  
Sumiharti Sumiharti ◽  
Sainil Amral

The purpose of this research is to describe women's gender insight from a family perspective through the characterization structure in Fira Basuki's novel Atap. This research uses descriptive qualitative research methods, solving problems in a study by describing or interpreting objects in the form of social phenomena or events that are revealed through expressions. Through this research, researchers can describe data from the object of research related to aspects of women's gender insight from a family perspective through the characterization structure in Fira Basuki's novel Atap. These aspects consist of aspects of socio-cultural change through the family and aspects of violence in the family from a feminist point of view. The source of data in this reseaech is the novel Atap by Fira Basuki. The data in this research were obtained from words, sentences, or expressions contained in the novel which refer to aspects of socio-cultural change through the family and aspects of family violence from a feminist point of view. The results showed that in socio-cultural changes through the family, it was found that there was still a gender bias towards justice that was obtained by women. Gender bias is also found in the female characters Kunti, Jane and Mak Umah as a result of violence in the family from a feminist point of view. Based on the problems that arise in socio-cultural relations through the family, it should be addressed wisely and directed in the form of protection. For example, legal protection is made and the public understands the existing forms of legal protection.


2019 ◽  
Vol 143 (3) ◽  
pp. 260-265
Author(s):  
Haiyue Zhang ◽  
Siqi Liu ◽  
Shasha Luo ◽  
Yanhui Jin ◽  
Lihong Yang ◽  
...  

Objective: To study the molecular basis of hereditary antithrombin (AT) deficiency in a Chinese family. It will help us understand the pathogenesis of this type of disease. Method: AT activity (AT:A) and the AT antigen (AT:Ag) level were tested by chromogenic substrate and immunoturbidimetry, respectively. To identify the novel mutations, SERPINC1 gene sequencing was carried out. The possible impact of the mutations was analyzed by model and bioinformatic analyses. Results: AT:A and the AT:Ag level of the proband were 43% and 113 mg/L (normal range: 98–119% and 250–360 mg/L), respectively. Sequencing analysis revealed compound heterozygous mutations, including a frameshift mutation (c.318_319insT) resulting in Asn75stop and a missense mutation (c.922G>T) resulting in Gly276Cys. The bioinformatic and model analyses indicated that these mutations may disrupt the function and structure of the AT protein. Conclusion: We detected 2 novel heterozygous mutations (c.318_319insT and c.922G>T) in the proband, and these were associated with decreased AT:A.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Siyuan Linpeng ◽  
Jing Liu ◽  
Jianyan Pan ◽  
Yingxi Cao ◽  
Yanling Teng ◽  
...  

Joubert syndrome (JBTS) is a clinically and genetically heterogeneous group of ciliary diseases. To date, 34 subtypes of JBTS have been classified due to different causative genes or extra clinical features. Most of them are autosomal recessive, while only the subtype 10 (JBTS10) is a quite rare X-linked recessive disorder caused by OFD1 mutations with few reports. In this study, by using whole exome sequencing (WES), a novel OFD1 splicing mutation (c.2488+2T>C) was identified in a male fetus with suspected Dandy-Walker variant (DWV) and syndactyly, for whom abnormal karyotype and pathogenic CNV have been excluded. This mutation was inherited from the mother who has experienced two similar pregnancies before. An abnormal skipping of exon 18 in OFD1 mRNA was confirmed by RT-PCR and sequencing. Result from quantitative RT-PCR also showed that total OFD1 mRNA in the index fetus was significantly lower than the control. After a combined analysis of genetic testing results and genotype-phenotype correlations, the novel mutation c.2488+2T>C in OFD1 was considered to be the genetic cause for the affected fetus. Thus the diagnosis should be JBTS10 rather than the primary clinical diagnosis of DWV. We report the first prenatal case of JBTS10 in Chinese population, which not only helps the family to predict recurrence risks for future pregnancies but also provides more information for understanding such a rare disease. The results also present evidence that WES is an effective method in prenatal diagnosis for those fetuses with Joubert syndrome.


2021 ◽  
pp. 105566562110109
Author(s):  
Qi Peng ◽  
Wenyan Qin ◽  
Siping Li ◽  
Meihua Huang ◽  
Chunbao Rao ◽  
...  

Aims: Van der Woude syndrome (VWS) is one of the most common craniofacial anomalies, causing significant functional and psychological burden to the patients. This study aimed to identify the genetic cause of VWS in a Chinese family. Methods: Whole genome sequencing (WGS) was performed to screen for pathogenic mutations. Various Bioinformatics tools were used to assess the pathogenicity of the variants. Cosegregation analysis of the candidate variant was carried out. Interpretation of variants was performed according to the American College of Medical Genetics and Genomics guidelines. Results: A novel frameshift duplication c.373_374dupAA (p.Asn125Lys fs*43) was identified in exon 4 of the interferon regulatory factor 6 (IRF6) gene in all 3 affected members, which were not found in unaffected family members. The novel mutation leads to a frameshift and a premature stop codon which caused putative truncated protein. Protein alignment indicated high evolutionary conservation of the p.N125 residue, and this mutation was predicted by online tools to be damaging and deleterious. Conclusions: This study demonstrates that the novel mutation c.373_374dupAA (p.Asn125Lysfs*43) in the IRF6 gene corresponds to the VWS in this family. The discovery of this pathogenic variant enriches the genotypic spectrum of IRF6 gene and contributes to genetic diagnosis and counseling of families with VWS.


2020 ◽  
Author(s):  
Jianbo Wang ◽  
Weisheng Li ◽  
Naihui Zhou ◽  
Jingliu Liu ◽  
Shoumin Zhang ◽  
...  

Abstract Background: Familial progressive hyper- and hypopigmentation (FPHH, MIM 145250) is a rare hereditary skin disorder that is predominantly characterized by progressive, diffuse, partly blotchy hyperpigmented lesions intermingled with scattered hypopigmented spots, lentigines and sometimes Cafe-au-lait spots (CALs). Heterozygous mutations of the KIT ligand (KITLG, MIM 184745) gene are responsible for FPHH. To date, only eight KITLG mutations have been reported to be associated with FPHH, and no clear genotype-phenotype correlations have been established. This study aimed to identify the causative mutations in the KITLG gene in two Chinese FPHH patients.Methods: Direct sequencing of the coding regions of KITLG was performed. Pathogenicity prediction was performed using bioinformatics tools, including SIFT, Polyphen2, and SWISS-MODEL, and the results were further evaluated according to the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines.Results: The novel mutation c.104A>T (p.Asn35Ile) and the recurrent mutation c.101C>T (p.Thr34Ile) in KITLG were identified. As shown using SIFT and Polyphen-2 software, both mutations identified in this study were predicted to be detrimental variations. Three-dimensional protein structure modeling indicated that the mutant KITLG proteins might affect the affinity of KITLG for its receptor, c-KIT. According to the 2015 ACMG guidelines, the novel mutation c.104A>T was ‘likely pathogenic’.Conclusions: To date, most of the identified KITLG mutations have been clustered within the conserved VTNNV motif (amino acids 33-37) in exon 2. The known mutations are only involved in 33V, 34T, 36N, and 37V but not 35N. We have now identified a novel mutation in KITLG, c.104A>T, that was first reported in FPHH within the conserved 35N motif. These results strengthen our understanding of FPHH and expand the mutational spectrum of the KITLG gene.


Sign in / Sign up

Export Citation Format

Share Document