scholarly journals The Immunomodulatory Effects of Plant Extracts and Plant Secondary Metabolites on Chronic Neuroinflammation and Cognitive Aging: A Mechanistic and Empirical Review

2017 ◽  
Vol 8 ◽  
Author(s):  
Christina Kure ◽  
Jorinde Timmer ◽  
Con Stough
2020 ◽  
Vol 20 (12) ◽  
pp. 1093-1104 ◽  
Author(s):  
Muhammad Shoaib Ali Gill ◽  
Hammad Saleem ◽  
Nafees Ahemad

Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.


2008 ◽  
Vol 48 (2) ◽  
pp. 175 ◽  
Author(s):  
D. N. Kamra ◽  
A. K. Patra ◽  
P. N. Chatterjee ◽  
Ravindra Kumar ◽  
Neeta Agarwal ◽  
...  

Plants rich in secondary metabolites (saponins, tannins, essential oils, etc.) have antimicrobial activity which can be exploited for selective inhibition of a particular group of microbes in the rumen. We have screened a large number of plant extracts for their potential to inhibit methanogenesis and ciliate protozoa in an in vitro gas production test using buffalo rumen liquor as the inoculum. Out of 93 plant extracts tested, 11 inhibited in vitro methanogenesis to the extent of 25–50% and nine plant extracts inhibited methanogenesis more than 50%. Among 20 extracts exhibiting antimethanogenic activity, nine were ethanol extracts, 10 were methanol extracts and only one was a water extract. Some of these plant extracts inhibited ciliate protozoa as tested by microscopic examination and 14C-labelled radioisotopic technique, but the protozoa inhibition was not correlated with methane inhibition, indicating that the methanogens sensitive to plant secondary metabolites may or may not be having any symbiotic relationship with ciliate protozoa. Methane inhibition was accompanied by a drastic fall in the number of methanogens as determined by real time PCR. Plants that appeared to have some potential as feed additives to control methanogenesis by the ruminants are: (i) seed pulp of Sapindus mukorossi (rich in saponins) and Terminalia chebula (rich in tannins); (ii) leaves of Populus deltoides, Mangifera indica and Psidium guajava (rich in tannins and essential oils); and (iii) flower buds of Syzygium aromaticum and bulb of Allium sativum (rich in essential oils). Some of the plants reported in literature exhibiting antimethanogenic activity include Equisetum arvense, Lotus corniculatus, Rheum palmatum, Salvia officinalis, Sapindus saponaria, Uncaria gambir and Yucca schidigera.


Parasitology ◽  
2011 ◽  
Vol 138 (5) ◽  
pp. 628-637 ◽  
Author(s):  
A. C. KOTZE ◽  
E. N. ZADOW ◽  
P. E. VERCOE ◽  
N. PHILLIPS ◽  
A. TOOVEY ◽  
...  

SUMMARYAs Rhagodia preissii had shown significant in vitro anthelmintic activity in a previous study, we examined the effect of including this shrub in the diet of sheep infected with Trichostrongylus colubriformis. Worm-infected merino wethers were grazed for 7 weeks on either R. preissii or annual pasture, and faecal egg counts (FECs) were conducted weekly. Plant material was collected weekly from eaten and uneaten plants, and analysed for levels of plant secondary metabolites (tannins, oxalates, saponins) and in vitro anthelmintic activity. While mean FECs were consistently lower in sheep grazing R. preissii compared to pasture (reductions of 20–74%), the differences were not significant. There was no relationship between grazing preference (eaten or uneaten) and in vitro anthelmintic activity of plant extracts. The levels of saponins and oxalates did not correlate with grazing preference or in vitro anthelmintic activity, while tannins were not responsible for the anthelmintic activity. While the identity of the grazing deterrent and in vitro anthelmintic compounds remain unknown, the presence of plants which were both highly preferred by the sheep and showed in vitro anthelmintic activity indicates a potential to develop the species as an anthelmintic shrub through selection of shrub populations dominated by such plants.


Author(s):  
A. S. M. Ali Reza ◽  
Mst. Samima Nasrin ◽  
Md. Amjad Hossen ◽  
Md. Atiar Rahman ◽  
Ibrahim Jantan ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 1-14
Author(s):  
Carine M.N. Ngaffo ◽  
Simplice B. Tankeo ◽  
Michel-Gael F. Guefack ◽  
Brice E. N. Wamba ◽  
Paul Nayim ◽  
...  

Abstract Background: Bacterial infections involving the multidrug resistant (MDR) strains are among the top leading causes of death throughout the world. Healthcare system across the globe has been suffering from an extra-ordinary burden in terms of looking for the new and more potent antimicrobial compounds. The aim of the present study was to determine the antibacterial activity of some Cameroonian edible plants (Garcinia lucida bark, Phoenix dactylifera pericarps, Theobroma cacao pod, Solanum macrocarpon leaves and Termitomyces titanicus whole plant) and their antibiotics-potentiation effects against some MDR Gram-negative bacteria phenotypes expressing efflux pumps (Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa and Providencia stuartii strains). Methods: The antibacterial activities of plant extract alone and in combination with usual antibiotics were carried out using the micro-dilution method. The effects of the most active plant extract (Garcinia lucida bark) on H+-ATPase-mediated proton pumps and on bacterial growth kinetic were performed using experimental protocols, while qualitative reference methods were used to highligh the major groups of secondary metabolites present in the extracts. Results: Qualitative phytochemical screening of plant extracts indicated that all analysed secondary metabolites were present in Theobroma cacao and Termitomyces titanicus while one (saponins) of them was absent in Garcinia lucida and Solanum macrocarpon. Only three of them (polyphenols, flavonoids and saponins) were detected in Phoenix dactylifera. Antibacterial essays showed that G. lucida was the most active plant as it inhibited the growth of all studied bacteria with strong activity (MIC<100 µg/mL) against E. coli ATCC8739, significant activity (100≤MIC≤512 µg/mL) against 80% of bacteria and moderate activity (512<MIC≤2048 µg/mL) against E. coli AG100A and E. aerogenes (EA289 and CM64). It was followed by T. cacao and S. macrocarpon extracts which exhibited an antibacterial potential against 95% and 80% of bacterial strains, respectively. These three extracts exhibited a bactericidal effect on a few bacteria. Extracts from T. titanicus and P. dactylifera were less active as they moderately (512<MIC≤2048 µg/mL) inhibited the growth of 35% and 10% of bacteria. All extracts selectively potentiated the activities of all antibiotics with improvement activity factors (IAF) ranging from 2 to 256. G. lucida, T. cacao and S. macrocarpon potentiated the activities of 100%, 89% and 67% of antibiotics respectively against more than 70%, suggesting that they contain bioactive compounds which could be considered as efflux pumps inhibitors. Whereas T. titanicus and P. dactylifera improved the activities of almost 40% and 20% of antibiotics, respectively. This increase of activities also characterizes synergistic effects between antibiotics and these bioactive compounds. G. lucida extract at all tested concentrations, strongly inhibited the growth of bacterial strain E. coli ATCC8739 and exhibited an inhibitory effect on this bacterial H+-ATPase-mediated proton pumps increasing the pH of the medium. Conclusion: The overall results indicated that food plants among which G. lucida, T. cacao and S. macrocarpon could have a benefit interest in combatting resistant types of bacteria. Keywords: Food plants; infectious diseases; MDR bacteria; efflux pumps; antibiotics; secondary metabolites.


2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


Sign in / Sign up

Export Citation Format

Share Document