scholarly journals Cannabis sativa L. (var. indica) Exhibits Hepatoprotective Effects by Modulating Hepatic Lipid Profile and Mitigating Gluconeogenesis and Cholinergic Dysfunction in Oxidative Hepatic Injury

2021 ◽  
Vol 12 ◽  
Author(s):  
Ochuko L. Erukainure ◽  
Motlalepula G. Matsabisa ◽  
Veronica F. Salau ◽  
Sunday O. Oyedemi ◽  
Omolola R. Oyenihi ◽  
...  

Cannabis sativa L. is a crop utilized globally for recreational, therapeutic, and religious purposes. Although considered as an illicit drug in most countries, C. sativa until recently started gaining attention for its medicinal application. This study sought to investigate the hepatoprotective effect of C. sativa on iron-mediated oxidative hepatic injury. Hepatic injury was induced ex vivo by incubating hepatic tissues with Fe2+, which led to depleted levels of reduced glutathione, superoxide dismutase, catalase and ENTPDase activities, triglyceride, and high-density lipoprotein–cholesterol (HDL-C). Induction of hepatic injury also caused significant elevation of malondialdehyde, nitric oxide, cholesterol, and low-density lipoprotein–cholesterol (LDL-C) levels while concomitantly elevating the activities of ATPase, glycogen phosphorylase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, amylase, and lipase. Treatment with the hexane, dichloromethane (DCM), and ethanol extracts of C. sativa leaves significantly (p < 0.05) reversed these levels and activities to almost near normal. However, there was no significant effect on the HDL-C level. The extracts also improved the utilization of glucose in Chang liver cells. High-performance liquid chromatography (HPLC) analysis showed the presence of phenolics in all extracts, with the ethanol extract having the highest constituents. Cannabidiol (CBD) was identified in all the extracts, while Δ-9-tetrahydrocannabinol (Δ-9-THC) was identified in the hexane and DCM extracts only. Molecular docking studies revealed strong interactions between CBD and Δ-9-THC with the β2 adrenergic receptor of the adrenergic system. The results demonstrate the potential of C. sativa to protect against oxidative-mediated hepatic injury by stalling oxidative stress, gluconeogenesis, and hepatic lipid accumulation while modulating cholinergic and purinergic activities. These activities may be associated with the synergistic effect of the compounds identified and possible interactions with the adrenergic system.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Anush Aghajanyan ◽  
Armine Nikoyan ◽  
Armen Trchounian

Diabetes mellitus (DM) is a serious chronic metabolic disorder. Various diseases are being treated with medicinal plants and that is because of the less side effects of the current therapy. The diversity of plants in Armenia is due to the singularity of natural environment. However, biochemical activity of these plants has not been studied well. Thus, the goal was to investigate biochemical activity and antihyperglycemic properties ofRumex obtusifoliusL. in rabbits with hyperglycemia. The high content of total phenolic compounds, flavonoids, and tannins has been determined in this plant extract. Oral administration of ethanol extract showed significant effect on hyperglycemia, reducing fasting glucose levels (57.3%, p<0.05), improving glucose tolerance, and increasing liver glycogen content (1.5-fold, p<0.01) compared to the hyperglycemic control group. Furthermore, ethanol extract ofR. obtusifoliusreduced total cholesterol, low-density lipoprotein cholesterol levels, and vice versa increased high-density lipoprotein cholesterol levels and also decreased liver enzymes levels (alanine aminotransferase and aspartate aminotransferase) compared with untreated group. These findings suggest thatR. obtusifoliusmay have beneficial effects and should be supplement, as herbal remedy in the treatment of DM.


2018 ◽  
Vol 38 (3) ◽  
pp. 356-370 ◽  
Author(s):  
A Gautam ◽  
YN Paudel ◽  
SAZ Abidin ◽  
U Bhandari

The current study investigated the role of guggulsterone (GS), a farnesoid X receptor antagonist, in the choline metabolism and its trimethylamine (TMA)/flavin monooxygenases/trimethylamine- N-oxide (TMAO) inhibiting potential in a series of in vitro and in vivo studies as determined by high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and liquid chromatography (LC)-MS techniques. Atherosclerosis (AS) was successfully induced in a group of experimental animals fed with 2% choline diet for 6 weeks. Serum lipid profiles such as total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were measured. Pro-inflammatory cytokines levels, markers for a hepatic injury, and oxidative stress markers were assessed. Interestingly, GS reduced the level of TMA/TMAO in both in vitro and in vivo studies as demonstrated by the peaks obtained from HPLC, MS, and LC–MS. Furthermore, GS exhibited cardioprotective and antihyperlipidemic effects as evidenced by the attenuation of levels of several serum lipid profiles and different atherogenic risk predictor indexes. GS also prevented hepatic injury by successfully restoring the levels of hepatic injury biomarkers to normal. Similarly, GS inhibited the production of pro-inflammatory cytokines levels, as well as GS, enhanced antioxidant capacity, and reduced lipid peroxidation. Histopathological study of aortic sections demonstrated that GS maintained the normal architecture in AS-induced rats. On the basis of results obtained from current investigation, we suggest that GS might have a great therapeutic potential for the treatment of AS.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 748 ◽  
Author(s):  
Tzu-Hsuan Ou ◽  
Yu-Tang Tung ◽  
Ting-Hsuan Yang ◽  
Yi-Wen Chien

The aim of this study was to investigate the effect of melatonin on hepatic lipid metabolism in hamsters with high-fat diet (HFD)-induced dyslipidemia. Male Syrian hamsters were kept on either a chow control (C) or HFD for four weeks. After four weeks, animals fed the HFD were further randomly assigned to four groups: high-fat only (P), melatonin low-dosage (L), medium-dosage (M), and high-dosage (H) groups. The L, M, and H groups, respectively, received 10, 20, and 50 mg/kg/day of a melatonin solution, while the P and C groups received the ethanol vehicle. After eight weeks of the intervention, results showed that a low dose of melatonin significantly reduced HFD-induced hepatic cholesterol and triglycerides; decreased plasma cholesterol, triglycerides, and low-density lipoprotein cholesterol; and increased plasma high-density lipoprotein cholesterol (p < 0.05). In addition, melatonin markedly decreased activities of the hepatic lipogenic enzymes, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) (p < 0.05), and elevated the relative hepatic carnitine palmitoyltransferase-1α expression in hamsters with HFD-induced hyperlipidemia. Consequently, melatonin reduced activities of the hepatic lipogenic enzymes, ACC and FAS. In summary, chronic melatonin administration improved HFD-induced dyslipidemia and hepatic lipid accumulation in Syrian hamsters with HFD-induced dyslipidemia, which might have occurred through inhibiting the lipogenesis pathway.


2003 ◽  
Vol 73 (4) ◽  
pp. 290-296 ◽  
Author(s):  
Badiou ◽  
Cristol ◽  
Morena ◽  
Bosc ◽  
Carbonneau ◽  
...  

Background: Oxidative stress and alterations in lipid metabolism observed in hemodialysis patients potentiate the low-density lipoprotein (LDL) oxidability, recognized as a key event during early atherogenesis. Objective: To explore the effects of an oral vitamin E supplementation on oxidative stress markers and LDL oxidability in hemodialysis patients. Methods: Fourteen hemodialysis patients and six healthy volunteers were given oral vitamin E (500 mg/day) for six months. Oxidative stress was assessed using: plasma and lipoprotein vitamin E levels [high-performance liquid chromatography (HPLC) procedure]; thiobarbituric acid reactive substances (TBARS, Yaggi method); and copper-induced LDL oxidation. All parameters were evaluated before initiation of vitamin E supplementation, and at three and six months thereafter. Results: At baseline, a significantly higher TBARS concentration and a higher LDL oxidability were observed in hemodialysis patients when compared to controls. After six months of vitamin E supplementation, TBARS and LDL oxidability were normalized in hemodialysis patients. Conclusion: Our data confirm that hemodialysis patients are exposed to oxidative stress and increased susceptibility to ex vivo LDL oxidation. Since oral vitamin E supplementation prevents oxidative stress and significantly increases LDL resistance to ex vivo oxidation, supplementation by natural antioxidants such as vitamin E may be beneficial in hemodialysis patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuying Xu ◽  
Shuwei Li ◽  
Wenjie Tang ◽  
Jiayou Yan ◽  
Xiaolan Wei ◽  
...  

Accumulating evidence has demonstrated that the imbalance of lipid metabolism and antioxidant capacity leads to damage to liver. The present study aimed to investigate the effects of ellagic acid (EA), a phenolic compound, on hepatic lipid metabolism and antioxidant activity in mice. In our study, 24 C57BL/6J mice were divided into three groups: (1) control (CON); (2) basal diet+0.1% EA (EA1); and (3) basal diet+0.3% EA (EA2). After the 14-day experiment, the liver was sampled for analysis. The results showed that 0.3% EA administration increased the liver weight. Total cholesterol and low-density lipoprotein cholesterol activities decreased and high-density lipoprotein cholesterol activity increased by EA supplementation. Meanwhile, dietary supplementation with EA dose-dependently decreased the acetyl-CoA carboxylase protein abundance and increased the phospho-hormone-sensitive lipase, carnitine palmitoyltransferase 1B, and peroxisome proliferator-activated receptor alpha protein abundances. Moreover, EA supplementation reduced the malonaldehyde concentration and increased the superoxide dismutase and catalase concentrations. The protein abundances of phospho-nuclear factor-E2-related factor 2, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1 increased by EA supplementation in a dose-dependent manner. Taken together, EA supplementation promoted the lipid metabolism and antioxidant capacity to maintain the liver health in mice.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 269 ◽  
Author(s):  
Ji-Hyun Lee ◽  
Joo-Myung Moon ◽  
Yoon-Hee Kim ◽  
Bori Lee ◽  
Sang-Yong Choi ◽  
...  

Enzyme treatment of the foods and herbs has been used to improve the absorption rate the efficiency of plant extracts by converting the glycosides of the plant into aglycones. In this study, we examined the obesity-inhibitory effect of Chrysanthemum indicum Linné (CI) treated with enzymes such as viscozyme and tannase, which are highly efficient in converting glycosides to aglycones and then compared with untreated CI extract. The enzyme-treated CI ethanol extract (CIVT) was administered orally at various doses for 7 weeks in the high fat diet (HFD)-fed male mice. CIVT administration reduced the body weights, the food efficiency and the serum levels of lipid metabolism-related biomarkers, such as triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and leptin in the dose-dependent manner but not those high-density lipoprotein cholesterol (HDL-c) and adiponectin. CIVT also reduced considerably the total lipid amount in the liver and the size of adipocytes in the epididymal white adipose tissue (eWAT). CIVT effectively downregulated the adipogenesis-related transcription factors such as peroxisome proliferation activated receptor (PPAR)-γ and CCAAT/enhancer binding protein-α (C/EBP-α) but up-regulated PPAR-α, in the liver and eWAT. In addition, when compared to the enzyme-untreated CI 50% ethanol extract (CIEE), CIVT enhanced the reduction of body weight and lipid accumulation. Moreover, the viscozyme and tannase treatment of CI increased the flavonoid contents of the aglycone form. Therefore, our results support that the enzymatic treatment induced the production of aglycones for potentially suppressing the adipogenesis and lipid accumulation in HFD-fed mice. It suggests that CIVT might be an effective candidate for attenuating the over-weight and its related diseases.


2020 ◽  
Vol 10 (1) ◽  
pp. 93-101
Author(s):  
Sahar Youssef Al-Okbi ◽  
Thanaa E Hamed ◽  
Tarek A Elewa ◽  
Asmaa A Ramadan ◽  
Mohamed F El-Karamany ◽  
...  

Introduction: Steatohepatitis, which is the deposition of fat in the liver with inflammation and starting of necrosis, can induce cardiovascular diseases (CVDs). The aim of this research was to study the preventive effects of steatohepatitis and CVD by ethanol extract of two quinoa varieties (quinoa 1 and hualhuas) in rats. Methods: Phenolic and flavonoid compounds were determined in the extracts utilizing colorimetric and high-performance liquid chromatography techniques. The 2,2-diphenyl-1-picryl-hydrazil (DPPH) scavenging activity was assessed for the extracts. Rats were divided into four groups, the first group was fed on a balanced diet (negative control), and other groups consumed a high fructose-fat diet (HFFD) to induce steatohepatitis and CVD. The second group served as a positive control; however, the third and fourth groups were treated by ethanol extract of quinoa 1 and hualhuas, respectively. Different biochemical changes, as well as liver and heart histopathology, were followed. Results: Results showed significant elevation in liver lipids, plasma malondialdehyde, total cholesterol (T-C), triglycerides and low-density lipoprotein cholesterol with reduction of high-density lipoprotein cholesterol (HDL-C) and total antioxidant as well as a significant increase in T-C/HDL-C in control positive group (P < 0.05) compared to control negative group. Plasma parameters and liver lipids were improved by the extracts; hualhuas was superior concerning the effect on lipid while quinoa 1 was more efficient in reducing oxidative stress. The oral glucose tolerance curve and the histopathology of the liver and heart tissues were improved by both extracts. Total phenolic and DPPH scavenging activity were higher in quinoa 1 than hualhuas. Protocatechuic and rutin were the major identified phenolic acid and flavonoid compounds, respectively in the extracts. Conclusion: Quinoa extracts are able to prevent the progression of steatohepatitis and CVD, and might be beneficial in patients with such diseases.


2019 ◽  
Vol 33 (4) ◽  
pp. 293-300
Author(s):  
Patcharaporn Aree ◽  
Tanyarat Jomgeow ◽  
Krid Thongbunjob ◽  
Chiraporn Tachaudomdach

Purpose The purpose of this paper is to study serum lipids, lipoproteins, homocysteine (Hcy) and platelet-derived growth factor (PDGF), and to evaluate the relationship between serum lipids, lipoproteins, Hcy and PDGF in patients with hypertension. Design/methodology/approach In total, 85 patients with hypertension (34 males, 51 females) were recruited from October to December 2015 at Saraphi Hospital, Chiang Mai Province using purposive sampling. PDGF mRNA levels of the patients were analyzed using the RT-PCR method. Hcy was analyzed by high-performance liquid chromatography. An enzymatic-colorimetric method was used to measure serum cholesterol, high-density lipoprotein cholesterol and triglyceride. A low-density lipoprotein cholesterol (LDL-C) level was calculated using Friedewald’s formula. Descriptive statistics and the Pearson product moment were also used in the analysis. Findings Among the patients with hypertension, hypercholesterolemia, high levels of LDL-C, hypertriglyceridemia and hyperhomocysteinemia were found in 54.1, 70.7, 25.9 and 44.7 percent, respectively. In addition, PDGF was significantly correlated with Hcy (r=0.705; p<0.005). There was no association between serum lipids or lipoproteins and Hcy or PDGF in patients with hypertension. Practical implications The results of this study provide direction on how serum lipids, lipoproteins, Hcy and PDGF can be used as a guide to improving dietary management as a means of reducing cardiovascular disease, and stroke in patients with hypertension. Originality/value This manuscript is not currently under consideration, in press or published elsewhere. This manuscript is truthful original work without fabrication, fraud or plagiarism. The authors have made important scientific contributions to this study. The authors are familiar with the primary data, and have read the entire manuscript and take responsibility for it content. No benefits were received by the authors or any member of the authors’ family or the research team, from any commercial source, directly or indirectly related to this work. Moreover, no one affiliated with has any financial interest related to the subject matter of this manuscript.


Sign in / Sign up

Export Citation Format

Share Document