scholarly journals CD226 Is Required to Maintain Megakaryocytes/Platelets Homeostasis in the Treatment of Knee Osteoarthritis With Platelet-Rich Plasma in Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Yongming Liu ◽  
Yuan Zhang ◽  
Jinxue Zhang ◽  
Jingchang Ma ◽  
Ka Bian ◽  
...  

Platelet-rich plasma (PRP) is a platelet-based application used to treat osteoarthritis (OA) clinically. The co-stimulatory molecule CD226 is expressed in T cells, NK cells, and also platelets. However, exact effects of CD226 on platelets and whether its expression level influences PRP efficacy are largely unknown. Here, CD226fl/flPF4-Cre mice were obtained from mating CD226 fl/fl mice with PF4-Cre mice. Blood samples and washed platelets were collected from the mice eyeballs to undergo routine blood tests and transmission electron microscopy. Differentially expressed proteins were detected by iTRAQ-based proteomics analysis. Animal OA models were established through surgical destabilization of the medial meniscus (DMM) for C57BL/6 wildtype mice, followed by PRP injection to evaluate the effects of platelet CD226 on PRP efficacy. The results showed that deletion of platelet CD226 increased the number of megakaryocytes (MKs) in bone marrow (BM) but reduced MKs in spleen, combined with significantly decreased platelet amounts, α-granule secretion, and reduced immature platelets; indicating that absence of platelet CD226 may disrupt MK/platelet homeostasis and arrested platelet release from MKs. Sequencing analysis showed abnormal ribosomal functions and much downregulated proteins in the absence of platelet CD226. Autophagy-related proteins were also reduced in the CD226-absent MKs/platelets. Moreover, deletion of platelet CD226 diminished the protective effects of PRP on DMM-induced cartilage lesions in mice, and PDGF restored it. Therefore, deficiency of platelet CD226 inhibited platelet maturation, secretion, and normal ribosomal functions, which may lead to depressed PRP efficacy on OA, suggesting that CD226 is required to regulate platelet growth, functions, and its application.

2002 ◽  
Vol 22 (7) ◽  
pp. 2011-2024 ◽  
Author(s):  
Melanie D. Ohi ◽  
Andrew J. Link ◽  
Liping Ren ◽  
Jennifer L. Jennings ◽  
W. Hayes McDonald ◽  
...  

ABSTRACT Schizosaccharomyces pombe Cdc5p and its Saccharomyces cerevisiae ortholog, Cef1p, are essential Myb-related proteins implicated in pre-mRNA splicing and contained within large multiprotein complexes. Here we describe the tandem affinity purification (TAP) of Cdc5p- and Cef1p-associated complexes. Using transmission electron microscopy, we show that the purified Cdc5p complex is a discrete structure. The components of the S. pombe Cdc5p/S. cerevisiae Cef1p complexes (termed Cwfs or Cwcs, respectively) were identified using direct analysis of large protein complex (DALPC) mass spectrometry (A. J. Link et al., Nat. Biotechnol. 17:676-682, 1999). At least 26 proteins were detected in the Cdc5p/Cef1p complexes. Comparison of the polypeptides identified by S. pombe Cdc5p purification with those identified by S. cerevisiae Cef1p purification indicates that these two yeast complexes are nearly identical in composition. The majority of S. pombe Cwf proteins and S. cerevisiae Cwc proteins are known pre-mRNA splicing factors including core Sm and U2 and U5 snRNP components. In addition, the complex contains the U2, U5, and U6 snRNAs. Previously uncharacterized proteins were also identified, and we provide evidence that several of these novel factors are involved in pre-mRNA splicing. Our data represent the first comprehensive analysis of CDC5-associated proteins in yeasts, describe a discrete highly conserved complex containing novel pre-mRNA splicing factors, and demonstrate the power of DALPC for identification of components in multiprotein complexes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yi-Reng Lin ◽  
Chao-Jen Kuo ◽  
Hugo You-Hsien Lin ◽  
Chin-Jen Wu ◽  
Shih-Shin Liang

We synthesized unmodified Fe3O4nanoparticles (NPs) with particles size from 10 nm to 100 nm. We cultured NRK-52E cell lines (rat, kidney) and treated with Fe3O4NPs to investigate and evaluate the cytotoxicity of NPs for NRK-52E cells. Through global proteomics analysis using dimethyl labeling techniques and liquid phase chromatography coupled with a tandem mass spectrometer (LC-MS/MS), we characterized 435 proteins including the programmed cell death related proteins, ras-related proteins, glutathione related proteins, and the chaperone proteins such as heat shock proteins, serpin H1, protein disulfide-isomerase A4, endoplasmin, and endoplasmic reticulum resident proteins. From the statistical data of identified proteins, we believed that NPs treatment causes cell death and promotes expression of ras-related proteins. In order to avoid apoptosis, NRK-52E cell lines induce a series of protective effects such as glutathione related proteins to reduce reactive oxygen species (ROS), and chaperone proteins to recycle damaged proteins. We suggested that, in the indigenous cellular environment, Fe3O4NPs treatment induced an antagonistic effect for cell lines to go to which avoids apoptosis.


2018 ◽  
Vol 50 (5) ◽  
pp. 1779-1793 ◽  
Author(s):  
Xiang Wang ◽  
Yun-Feng Fu ◽  
Xiao Liu ◽  
Guo Feng ◽  
Dan Xiong ◽  
...  

Background/Aims: Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in patients with dyslipidemic disorders. Although oxLDL stimulates activating signaling, researchers have not clearly determined how these events drive accelerated thrombosis. Here, we describe the mechanism by which ROS regulate autophagy during ox-LDL-induced platelet activation by modulating the PI3K/AKT/mTOR signaling pathway. Methods: For in vitro experiments, ox-LDL, the ROS scavenger N-acetylcysteine (NAC), the mTOR inhibitor rapamycin and the autophagy inhibitor 3-MA were used alone or in combination with other compounds to treat platelets. Then, platelet aggregation was evaluated on an aggregometer and platelet adhesion was measured under shear stress. The levels of a platelet activation marker (CD62p) were measured by flow cytometry, reactive oxygen species (ROS) levels were then quantified by measuring DCFH-DA fluorescence intensity via flow cytometry. Nitric oxide (NO) and superoxide (O2·-) levels were determined by the nitric acid deoxidize enzyme method and lucigenin-enhanced chemiluminescence (CL), respectively. Transmission electron microscopy was used to observe the autophagosome formation, immunofluorescence staining was employed to detect LC3 expression and western blotting was used to measure the levels of PI3K/AKT/mTOR pathway- and autophagy-related proteins. Results: Ox-LDL-induced platelets showed a significant increase in platelet aggregation and adhesion, CD62p expression, ROS level and O2·- content, with an elevated LC3II/LC3I ratio and Beclin1 expression, but a dramatic reduction in the levels of p62 and pathway-related proteins (all P < 0.05). However, platelet activation and autophagy were aggravated by the Rapamycin treatment, and decreased following treatment with NAC, 3-MA, or NAC and 3-MA, together with increased activity of the PI3K/AKT/mTOR pathway. Additionally, decreased platelet activation and autophagy were observed in platelets treated with NAC and Rapamycin or Rapamycin and 3-MA compared with platelets treated with Rapamycin alone, suggesting that both NAC and 3-MA reversed the effects of Rapamycin. Conclusion: Inhibition of ROS production may reduce autophagy to suppress ox-LDL-induced platelet activation by activating PI3K/AKT/mTOR pathway.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yin Zhang ◽  
Qinge Wang ◽  
Yuping Xu ◽  
Jing Sun ◽  
Yanbo Ding ◽  
...  

Benign esophageal strictures (BESs) frequently results from esophageal fibrosis. The transformation of fibroblasts into fibrocyte is an important cause of fibrosis. The treatment of fibrosis is challenging. Some previous studies have indicated the antifibrotic effect of mitomycin C (MMC). However, the mechanism of action of MMC and its optimal dose for treatment remains unclear. In the present study, the role of MMC in fighting fibrosis and its mechanism was investigated. Human esophageal fibroblast cells (HEFs)were treated without or with MMC, at 2, 5, 10 μg/ml, combining with mimic lncRNA-ATB, miR-200b inhibitor, rapamycin (RAPA), and 3-Methyladenine (3-MA). The cell viability, and cell apoptosis were evaluated. In addition, expression of apoptosis related proteins (caspase8 and caspase3), autophagy related proteins (LC3II and ATG5) and fibrosis related proteins (α-SMA collagen-1 and TGF-β) were also evaluated. Furthermore, autophagosome was observed by transmission electron microscope. Results showed that the expression of lncRNA-ATB was down-regulated and miR-200b was up-regulated after treated with MMC. And MMC induced cell apoptosis and inhibited cell autophagy. On the other hand, RAPA, mimic lncRNA-ATB and miR-200b inhibitor reduced fibrogenic effect of MMC on HEFs. Collectively, this study suggests that MMC inhibited esophageal fibrosis by regulating cell apoptosis and autophagy via downregulating lncRNA-ATB and upregulating miR-200b.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Fan Yang ◽  
Haoran Hu ◽  
Wenjing Yin ◽  
Guangyi Li ◽  
Ting Yuan ◽  
...  

Background. Platelet-rich plasma (PRP) has been shown to be a promising therapeutic agent against osteoarthritis (OA), whereas its chondroprotection mechanism is not fully elucidated. Autophagy is considered an important biological process throughout the development of OA. Therefore, the objective of the present study is to investigate the role of autophagy in the chondroprotection and compare the effects of releasate between L-PRP and P-PRP. Methods. PRP were prepared from rat blood. Rat chondrocytes pretreated in the presence or absence of interleukin-1 beta (IL-1β) were incubated with PRP releasate. The expressions of OA-related genes and autophagy-related genes were determined by RT-PCR and western blot, respectively. Autophagic bodies were assessed by transmission electron microscopy and the autophagy flux was monitored under the confocal microscopy. The effect of PRP on autophagy was further investigated in the milieu of autophagy activator, rapamycin, or autophagy inhibition by downregulation of Atg5. The effect of PRP on cartilage repair and autophagy was also evaluated in an OA rat model. Results. In vitro, PRP releasate increased the expression of the anabolic genes, COL2 and Aggrecan, and decreased the expression of the catabolic genes, whereas the expression of autophage markers, Atg5 and Beclin-1, as well as the ratio of LC3 II/LC3 I, was not significantly altered in normal or IL-1β-treated chondrocytes. Similar expression pattern was found following the activation (rapamycin) or inhibition (Atg5 silencing) of autophagy. In vivo, PRP releasate ameliorated posttraumatic cartilage degeneration while the expression of LC3 was comparable to that in the vehicle treatment group. Conclusions. PRP releasate promoted the anabolic gene expression, relieved inflammatory stress in chondrocytes, and ameliorated cartilage degeneration, but autophagy was independent of these processes.


1981 ◽  
Author(s):  
C M Chesney ◽  
D D Pifer

PGI2,which increases platelet cAMP(Prostaglandins 13: 389,1977),is a potent inhibitor of aggregation and secretion .We stidued the time course of the same return of platelet function after exposure of platelets to PGI2.Sepharose 2B columns were equilibrated with Tyrode’s albumin buffer, pH7.5 (no Ca2+) containing PGI2 (534nM). Platelet rich plasma was applied and eluted with the same buffer. The filtered platelets(GFP) were then subsampled hourly after elution from the column. Fibrinogen was added to finel concentration of 1.7mg/ml. Platelet aggregation(PA) and release of 14C serotonin (5HT),platelet factor 4(PF4), and factor V (FV) were assayed after stimulation of the platelet by collagen(C), ADP,epinephrine(E), arachidonic acid(AA) and ionophore A23187(I). Data representative of 5 separate studies follow.I(20μg/ml) induced PA was 76%(Ohr),52%(1hr) and 61%(2hr and beyond). Release of 5HT, FV,and PF4 were 60%,1.89u,and 7.97 yg/10 pit, respectively, at time 0 and increased progressively, reaching a plateau at 2 hr. AA(500μg/ml) was 10%(0hr),30%(2hr),68%(3hr) and 8%(4hr). Release of 5HT paralleled PA but release of FV and PF4 remained suppressed for 4 hrs. In contrast α-granule (PF4 and FV)release by C(μg/ml)increased as PA increased while dense granule secretion remained suppressed. PA as well as a and dense granule secretion by ADP (10μM) were minimal during 4 hrs. PA and FV secretion by E (55μM) also remain inhibited for 4 hrs. In spite of this normal dense granule release occurred initially and declined progressively over 4 hours.


Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581984740 ◽  
Author(s):  
Minghua Li ◽  
Yawei Gou ◽  
Hongmei Yu ◽  
Tiefeng Ji ◽  
Yi Li ◽  
...  

Aims: Metformin is commonly used to treat type 2 diabetes mellitus; however, in recent years, it was found to play a potential role in the protection of myocardial injury. In this study, we intended to investigate whether metformin had protective effects on bacterial myocarditis. Methods and Results: We stimulated rat cardiac myoblast H9c2 cells with lipopolysaccharide (LPS) and administrated with metformin. The results showed that cell viability after LPS stimulation was greatly reduced. The expression levels of phosphorylated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinases (JNK), nuclear factor (NF)-κB (NF-κB), BAX, and cleaved Caspase3 were significantly increased, while the expression of antiapoptotic protein Bcl-2 showed a prominent decrease compared to control. Nevertheless, the cells activity increased remarkably after metformin administration, and the expression levels of intracellular related proteins showed the opposite trend to that of the LPS group. Conclusion: We demonstrate that LPS stimulation may activate intracellular MAPK/JNK and NF-κB signaling pathways and thus induce cell apoptosis. In contrast, metformin reduced apoptosis by inhibiting this signaling pathway and increasing the expression level of Bcl-2. Moreover, it was found that metformin could enhance the ability of cells to antagonize redox damage by regulating the activities of superoxide dismutase and lactate dehydrogenase and subsequently promote the recovery of cardiomyocyte function.


Blood ◽  
1983 ◽  
Vol 61 (1) ◽  
pp. 154-162 ◽  
Author(s):  
B Lages ◽  
H Holmsen ◽  
HJ Weiss ◽  
C Dangelmaier

Abstract The secretion of the dense granule constituents ATP, ADP, calcium, pyrophosphate (PPi), and orthophosphate (Pi), and the release of magnesium induced by thrombin and the divalent cation ionophore A23187 have been quantitated directly in gel-filtered platelets from patients with storage pool deficiency (SPD). Both the contents and the maximal amounts of the dense granule constituents secretable by thrombin were decreased in all the patients studied, while the nonsecretable, retained amounts of these substances were identical in SPD and normal platelets. In response to both thrombin and A23187, the amounts of secretable ATP and ADP were strongly correlated in the platelets of individual patients; in contrast, secretable calcium showed no correlation with the nucleotides, and significant amounts of calcium were secreted in the total absence of nucleotide secretion in the platelets of several patients. The contents of magnesium were normal in all patients, and approximately 12% of platelet magnesium was liberated by thrombin in both SPD and normal platelets. A23187 induced the release of up to 70% of the magnesium content of normal platelets, but released significantly less (46%) magnesium from SPD platelets. Platelet aggregation induced by A23187 in platelet-rich plasma was also markedly decreased in SPD platelets. The correlations among secretable dense granule constituents suggest the presence in SPD platelets of abnormal dense granule structures that sequester calcium and other constituents but little or no adenine nucleotides, and are thus consistent with a hypothesis that impaired nucleotide transport and/or storage may be the primary dense granule defect in this disorder. In addition, these results demonstrate that certain responses to A23187 are impaired in SPD platelets.


2006 ◽  
Vol 95 (01) ◽  
pp. 100-106 ◽  
Author(s):  
John Savill ◽  
Simon Brown ◽  
Paul Hartley

SummaryThe ability to readily identify dead platelets is invaluable to studies examining the means of their death, factors affecting their lifespan and their means of clearance by phagocytes. The aim of the present work was to develop a vital staining procedure for the rapid and objective discrimination of live from dead platelets that accrued in citrated platelet rich plasma (cPRP) incubated at 37°C for several days. By transmission electron microscopy it was noted that platelet death was morphologically similar to necrosis and associated with aggregate formation. The vital dyes calcein-AM and FM 4–64 were found to robustly report the death of platelets and indicated that the aggregates which formed during incubation were populated exclusively by dead platelets. Additionally, platelet death was associated with the shedding of CD42b. Microscopic and cytometric analyses of incubated cPRP indicated that shedding of CD42b and aggregate formation by dead platelets were completely inhibited by the metalloproteinase inhibitor GM6001. Automated counting of platelets incubated in the presence of GM6001 revealed that death did not lead to a loss in cellularity. It is proposed that calcein-AM and FM4–64 are effective as vital stains for the reliable assessment of platelet viability and that platelet aggregation can occur by a novel mechanism dependent upon platelet death and metalloproteinase activity.


Sign in / Sign up

Export Citation Format

Share Document