scholarly journals The Protective Effects of Zornia diphylla (L.) Pers. Against Acute Liver Injury Induced by Carbon Tetrachloride in Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Su-Zhi Xie ◽  
Xiang-Yang Zhai ◽  
Sheng-Yan Xi ◽  
Ying-Kun Qiu ◽  
Yu-Mei Zhang ◽  
...  

Background:Zornia diphylla (L.) Pers. (ZDP) is a traditional Chinese herbal medicine that has been used for several decades to treat patients with liver diseases. Whether ZDP is best administered as a single agent or adjunctive therapy has yet to be determined as does the mechanism whereby it exerts its effects on antagonizing acute liver injury (ALI).Aim of the study: To investigate the protective effects of ZDP on ALI induced by carbon tetrachloride (CCl4) and the potential underlying mechanisms.Materials and Methods: Sixty adult mice were randomized into six study groups (n = 10/group). Three groups were treated with different concentrations of ZDP (2.5, 1.25, 0.625 g/kg), one with bifendate (0.0075 g/kg) alone (positive control) and one with physiologic saline (normal, negative control). All groups were treated for 14 days. Two hours after the last administration, the normal group received an intraperitoneal injection of peanut oil, and the other five groups received an intraperitoneal injection of an equal dose of CCl4 peanut oil solution. At 24 h, the liver index, histology and serum or tissue levels and/or protein expression of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), alkaline phosphatase (ALP), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione (GSH), Akt, phosphorylated Akt (p-Akt), nuclear factor kappa B p65 (NF-κB p65), inhibitor of NF-κB α (IκB-α), interleukin-1 β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), E-cadherin and vimentin were determined.Results: Compared to the model controls, the degree of inflammatory cell infiltration and hepatocyte injury of liver tissue was relieved in the bifendate and three ZDP groups; liver index in the ZDP (2.5, 1.25 g/kg) groups and serum liver function indices in the ZDP (2.5, 1.25 and 0.625 g/kg) groups were decreased; antioxidants SOD, CAT and GSH in liver tissue were increased but the lipid peroxidation index MDA was decreased; protein expression of inflammatory cytokines Akt, p-Akt, NF-κB p65, IκB-α, IL-1β, IL-6 and TNF-α in the liver was ameliorated, and E-cadherin expression was increased. The results of liver histopathology also showed that ZDP had a significant effect on ALI.Conclusion: ZDP has obvious protective effects on CCl4-induced ALI as a single therapy and appears to act by inhibiting oxidation, reducing the release of inflammatory factors and promoting hepatocyte repair.

2021 ◽  
Vol 11 (1) ◽  
pp. 390
Author(s):  
Beom-Rak Choi ◽  
Il-Je Cho ◽  
Su-Jin Jung ◽  
Jae-Kwang Kim ◽  
Dae-Geon Lee ◽  
...  

Lemon balm and dandelion are commonly used medicinal herbs exhibiting numerous pharmacological activities that are beneficial for human health. In this study, we explored the protective effects of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (MLD) on carbon tetrachloride (CCl4)-induced acute liver injury in mice. CCl4 (0.5 mL/kg; i.p.) injection inhibited body weight gain and increased relative liver weight. Pre-administration of MLD (50–200 mg/kg) for 7 days prevented these CCl4-mediated changes. In addition, histopathological analysis revealed that MLD synergistically alleviated CCl4-mediated hepatocyte degeneration and infiltration of inflammatory cells. MLD decreased serum aspartate aminotransferase and alanine transferase activities and reduced the number of liver cells that stained positive for cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase, suggesting that MLD protects against CCl4-induced hepatic damage via the inhibition of apoptosis. Moreover, MLD attenuated CCl4-mediated lipid peroxidation and protein nitrosylation by restoring impaired hepatic nuclear factor erythroid 2-related factor 2 mRNA levels and its dependent antioxidant activities. Furthermore, MLD synergistically decreased mRNA and protein levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the liver. Together, these results suggest that MLD has potential for preventing acute liver injury by inhibiting apoptosis, oxidative stress, and inflammation.


2020 ◽  
Vol 21 (21) ◽  
pp. 7894 ◽  
Author(s):  
Il-Gyu Ko ◽  
Jun-Jang Jin ◽  
Lakkyong Hwang ◽  
Sang-Hoon Kim ◽  
Chang-Ju Kim ◽  
...  

Acute liver injury (ALI) causes life-threatening clinical problem, and its underlying etiology includes inflammation and apoptosis. An adenosine A2A receptor agonist, polydeoxyribonucleotide (PDRN), exhibits anti-inflammatory and anti-apoptotic effects by inhibiting the secretion of pro-inflammatory cytokines. In the current study, the protective effect of PDRN against carbon tetrachloride (CCl4)-induced ALI was investigated using mice. For the induction of ALI, mice received intraperitoneal injection of CCl4 twice over seven days. Mice from the PDRN-treated groups received an intraperitoneal injection of 200 μL saline containing PDRN (8 mg/kg), once a day for seven days, starting on day 1 after the first CCl4 injection. In order to confirm that the action of PDRN occurs through the adenosine A2A receptor, 8 mg/kg 3,7-dimethyl-1-propargylxanthine (DMPX), an adenosine A2A receptor antagonist, was treated with PDRN. Administration of CCl4 impaired liver tissue and increased the liver index and histopathologic score. The expression of pro-inflammatory cytokines was increased, and apoptosis was induced by the administration of CCl4. Administration of CCl4 activated nuclear factor-kappa B (NF-κB) and facilitated phosphorylation of signaling factors in mitogen-activated protein kinase (MAPK). In contrast, PDRN treatment suppressed the secretion of pro-inflammatory cytokines and inhibited apoptosis. PDRN treatment inactivated NF-κB and suppressed phosphorylation of signaling factors in MAPK. As a result, liver index and histopathologic score were reduced by PDRN treatment. When PDRN was treated with DMPX, the anti-inflammatory and anti-apoptotic effect of PDRN disappeared. Therefore, PDRN can be used as an effective therapeutic agent for acute liver damage.


2011 ◽  
Vol 32 (10) ◽  
pp. 796-803 ◽  
Author(s):  
Peng Chen ◽  
Zhongqiu Wang ◽  
Liyan Zeng ◽  
Shiming Wang ◽  
Wei Dong ◽  
...  

2020 ◽  
Vol 24 (Suppl 2) ◽  
pp. 88-95
Author(s):  
Seunghwan Lee ◽  
Kyu Yeoun Won ◽  
Sunhyung Joo

Purpose: Polydeoxyribonucleotide (PDRN) is a substance known to suppress inflammation and accelerate wound healing. In this experiment, the effect of PDRN treatment on carbon tetrachloride (CCl<sub>4</sub>)-evoked acute liver injury (ALI) was investigated using mice.Methods: We analyzed the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and conducted hematoxylin and eosin staining in accompany with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Western blot analysis was also conducted to assess the expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, adenosine A<sub>2A</sub> receptor, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The mice were received intraperitoneal injection of 10-mL/kg CCl<sub>4</sub>, 4 times, once every 2 days. The mice in the PDRN treatment groups received intraperitoneal injection of 200-μL distilled water comprising each concentration of PDRN for 7 days starting 1 day after first CCl<sub>4</sub> injection.Results: ALT and AST concentrations in the serum were reduced and TNF-α, IL-1β, and IL-6 expressions were decreased by PDRN injection in CCl<sub>4</sub>-evoked ALI mice. PDRN injection suppressed Bax versus Bcl-2 ratio and reduced the percentage of TUNE-positive cells in CCl<sub>4</sub>-evoked ALI mice. PDRN injection overexpressed adenosine A<sub>2A</sub> receptor in CCl<sub>4</sub>-evoked ALI mice.Conclusions: The therapeutic efficacy of PDRN also can be expected for CCl<sub>4</sub>-evoked acute urogenital injury in addition to ALI. The current research suggests that PDRN may be used for the therapeutic agent of CCl<sub>4</sub>-evoked ALI.


Pharmacology ◽  
2019 ◽  
Vol 103 (3-4) ◽  
pp. 143-150 ◽  
Author(s):  
Yu-Sheng Chen ◽  
Quan-Zhan Chen ◽  
Zhen-Jiong Wang ◽  
Chun Hua

Background: Ganoderma lucidum Polysaccharides (GLPS) were found to possess various pharmacological properties including anti-inflammatory and hepatoprotective activities. However, the effect and possible mechanism of GLPS treatment on liver injury have not yet been reported. Therefore, this study aimed to explore the potential anti-inflammatory and hepatoprotective effects and possible mechanism of GLPS in carbon tetrachloride (CCl4)-induced acute liver injury mice. Summary: GLPS significantly reduced the activation of NLRP3 inflammasome and improved liver function in liver injury mice. It significantly inhibited CCl4-induced changes of alanine aminotransferase and aspartate aminotransferase activities in serum, as well as nitric oxide synthase (NOS) and cytochrome P450 2E1 (CYP2E1) activities in liver tissue; it also remarkably decreased levels of liver weight and index, total bilirubin, interleukin (IL)-1β, IL-18, IL-6 and tumor necrosis factor-α in serum, as well as malondialdehyde and IL-1β in liver tissue. Protein expression levels of liver NLRP3, ASC, and Caspase-1 were also downregulated, while the glutathione level in liver tissue was remarkably enhanced in GLPS groups compared to that of the model group. Key Message: These results suggested that GLPS may be a potential for the prevention and treatment of acute liver injury with liver inflammation. The possible mechanism may be related to the inhibition of free radical lipid peroxidation, NOS, and CYP2E1 activities and activation of liver inflammatory factors.


1998 ◽  
Vol 26 (03n04) ◽  
pp. 333-341 ◽  
Author(s):  
Shigeyuki Kanai ◽  
Hideyuki Okano

To examine the mechanism of the preventive effect of tannins on the progression of carbon tetrachloride (CCl4)-induced acute liver injury in rats, sumac gall (SG) extract and gallic acid (GA) were used as substitutes for crude tannins, because SG is a kind of Chinese traditional medicinal herb containing large amounts of various tannins, and GA is one of the major constituents of SG. The protective effect of oral (p.o.) and intraperitoneal (i.p.) administration of each substance on progression of CCl4-induced hepatitis was investigated in rats. Speculating that the superoxide dismutase (SOD)-like activities (O2 radical-scavenging activities) and/or protective effects of these substances on cell membranes might play a key role in the mechanism opposing the progression of CCl4-induced hepatitis, the O2 radical-scavenging activities in liver cells and serum in rats were monitored. Both substances significantly prevented the progression of acute liver injury with both p.o. and i.p. administration. These findings suggest that the mechanism for this prevention might be due mainly to the protective effect of these substances on cell membranes rather than O2 radical-scavenging activities.


2015 ◽  
Vol 43 (02) ◽  
pp. 231-240 ◽  
Author(s):  
Mo-Si Chen ◽  
Jia-Hua Zhang ◽  
Jia-Ling Wang ◽  
Lu Gao ◽  
Xiao-Xu Chen ◽  
...  

The effects of neferine, a bisbenzylisoquinline alkaloid extracted from the seed embryo of the Chinese traditional medicine Nelumbo nucifera Gaertn, on carbon tetrachloride ( CCl 4)-induced hepatic fibrosis in mice were evaluated. Adult male Kunming mice were administered with CCl 4 1 ml/kg via intraperitoneal injection twice a week for 8 weeks. At the beginning of the 9th week, mice were treated with normal saline, colchicine (0.1 mg/kg), and neferine (5, 10, 20 mg/kg) via intraperitoneal injection once a day for 2 weeks. The liver index and histological examination, plasma ALT/AST levels, hydroxyproline and TGF-β1 content of liver tissue were examined. In the model group, the liver index, the hydroxyproline content of liver tissue and plasma ALT/AST levels were increased, and a high expression of TGF-β1 was observed. The abnormal changes could be improved by neferine in a dose-dependent manner. Our data showed that neferine had an antifibrosis effect on CCl 4-induced hepatic fibrosis in mice, possibly partly due to the decreased expression of TGF-β1 in the liver.


2016 ◽  
Vol 94 (12) ◽  
pp. 1291-1297 ◽  
Author(s):  
Hao Wu ◽  
Yong Qiu ◽  
Ziyang Shu ◽  
Xu Zhang ◽  
Renpeng Li ◽  
...  

To explore hepatoprotective role and underlying mechanisms of Trillium tschonoskii Maxim (TTM), 36 rats were randomly divided into control, CCl4-induced liver injury model, and biphenyl dimethyl dicarboxylate (DDB) and low-, moderate-, and high-dose TTM treatment groups. After CCl4-induced model establishment, the rats from DDB and TTM groups were administrated with DDB at 0.2 g/kg per day and TTM at 0.1, 0.5, and 1.0 g/kg per day, while the rats from control and model groups were administrated with saline. After 5 days of treatments, all rats were sacrificed for determining serum ALT and AST levels and liver index, examining histopathological changes in liver through HE and TUNEL staining, and evaluating TNF-α and IL-6 mRNA expression by real-time PCR, and caspase-3, Bcl-2, and Bax expression by Western blot. Results indicated that CCl4 could induce acute liver injury and abnormal liver function in rats with obvious hepatomegaly, increased liver index, high ALT and AST levels, up-regulated TNF-α and IL-6, and overexpressed Bax and caspase-3. However, DDB and TTM could execute protective role in CCl4-induced liver injury in rats through reducing ALT and AST levels, rescuing hepatomegaly, down-regulating inflammatory factors and inhibiting hepatocyte apoptosis in a dose-dependent manner. Therefore, TTM has obvious protective role in CCl4-induced liver injury of rats through inhibiting hepatocyte apoptosis.


Sign in / Sign up

Export Citation Format

Share Document