scholarly journals Vitamin B6 Alleviates Lipopolysaccharide-induced Myocardial Injury by Ferroptosis and Apoptosis Regulation

2021 ◽  
Vol 12 ◽  
Author(s):  
Meirong Shan ◽  
Xujie Yu ◽  
Yajie Li ◽  
Changning Fu ◽  
Cheng Zhang

Vitamin B6 (VitB6) is a water-soluble vitamin and includes pyridoxine, pyridoxal, pyridoxamine, and their phosphorylated forms. In the current study, we demonstrated that VitB6 could improve lipopolysaccharide (LPS)–induced myocardial injury. We demonstrated that VitB6 can suppress LPS-induced oxidative stress and lipid peroxidation that lead to ferroptosis and apoptosis in vivo and in vitro. Moreover, we found that VitB6 can regulate the expression of iron regulatory proteins, maintaining intracellular iron homeostasis. To confirm that VitB6 could inhibit LPS-induced ferroptosis and apoptosis, we pretreated mice with ferrostatin-1 (Fer-1) and emricasan that efficiently mimicked VitB6 pharmacological effects. This improved the survival rate of mice challenged with a high LPS dose. In addition, VitB6 regulated the expression of LPS-induced apoptosis-related proteins and iron regulatory proteins. It mediated the expression of Nrf2, transcription factor NF-E2–related factor 2, which promoted the expression of antioxidant enzymes and restrained LPS-induced ferroptosis and apoptosis. Overall, our results indicated that VitB6 can be used on novel therapies to relieve LPS-induced myocardial injury.

Author(s):  
Wen-Dai Bao ◽  
Pei Pang ◽  
Xiao-Ting Zhou ◽  
Fan Hu ◽  
Wan Xiong ◽  
...  

AbstractIron homeostasis disturbance has been implicated in Alzheimer’s disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer’s mouse model and Alzheimer’s patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aβ aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Stefanie Dichtl ◽  
Egon Demetz ◽  
David Haschka ◽  
Piotr Tymoszuk ◽  
Verena Petzer ◽  
...  

ABSTRACTWe have recently shown that the catecholamine dopamine regulates cellular iron homeostasis in macrophages. As iron is an essential nutrient for microbes, and intracellular iron availability affects the growth of intracellular bacteria, we studied whether dopamine administration impacts the course ofSalmonellainfections. Dopamine was found to promote the growth ofSalmonellaboth in culture and within bone marrow-derived macrophages, which was dependent on increased bacterial iron acquisition. Dopamine administration to mice infected withSalmonella entericaserovar Typhimurium resulted in significantly increased bacterial burdens in liver and spleen, as well as reduced survival. The promotion of bacterial growth by dopamine was independent of the siderophore-binding host peptide lipocalin-2. Rather, dopamine enhancement of iron uptake requires both the histidine sensor kinase QseC and bacterial iron transporters, in particular SitABCD, and may also involve the increased expression of bacterial iron uptake genes. Deletion or pharmacological blockade of QseC reduced but did not abolish the growth-promoting effects of dopamine. Dopamine also modulated systemic iron homeostasis by increasing hepcidin expression and depleting macrophages of the iron exporter ferroportin, which enhanced intracellular bacterial growth.Salmonellalacking all central iron uptake pathways failed to benefit from dopamine treatment. These observations are potentially relevant to critically ill patients, in whom the pharmacological administration of catecholamines to improve circulatory performance may exacerbate the course of infection with siderophilic bacteria.IMPORTANCEHere we show that dopamine increases bacterial iron incorporation and promotesSalmonellaTyphimurium growth bothin vitroandin vivo. These observations suggest the potential hazards of pharmacological catecholamine administration in patients with bacterial sepsis but also suggest that the inhibition of bacterial iron acquisition might provide a useful approach to antimicrobial therapy.


2012 ◽  
Vol 80 (10) ◽  
pp. 3650-3659 ◽  
Author(s):  
Ruchi Pandey ◽  
G. Marcela Rodriguez

ABSTRACTIron is an essential, elusive, and potentially toxic nutrient for most pathogens, includingMycobacterium tuberculosis. Due to the poor solubility of ferric iron under aerobic conditions, free iron is not found in the host.M. tuberculosisrequires specialized iron acquisition systems to replicate and cause disease. It also depends on a strict control of iron metabolism and intracellular iron levels to prevent iron-mediated toxicity. Under conditions of iron sufficiency,M. tuberculosisrepresses iron acquisition and induces iron storage, suggesting an important role for iron storage proteins in iron homeostasis.M. tuberculosissynthesizes two iron storage proteins, a ferritin (BfrB) and a bacterioferritin (BfrA). The individual contributions of these proteins to the adaptive response ofM. tuberculosisto changes in iron availability are not clear. By generating individual knockout strains ofbfrAandbfrB, the contribution of each one of these proteins to the maintenance of iron homeostasis was determined. The effect of altered iron homeostasis, resulting from impaired iron storage, on the resistance ofM. tuberculosistoin vitroandin vivostresses was examined. The results show that ferritin is required to maintain iron homeostasis, whereas bacterioferritin seems to be dispensable for this function.M. tuberculosislacking ferritin suffers from iron-mediated toxicity, is unable to persist in mice, and, most importantly, is highly susceptible to killing by antibiotics, showing that endogenous oxidative stress can enhance the antibiotic killing of this important pathogen. These results are relevant for the design of new therapeutic strategies againstM. tuberculosis.


2017 ◽  
Author(s):  
David N. Powers ◽  
Ajay A. Vashisht ◽  
Monika Shenouda ◽  
Calvin Yao ◽  
James A. Wohlschlegel

ABSTRACTIntracellular iron homeostasis is regulated by a proteolytic switch whereby the E3 ubiquitin ligase FBXL5 targets iron regulatory proteins (IRPs) for ubiquitin-dependent degradation in iron-replete conditions while it is itself degraded during iron deficiency allowing IRPs to accumulate and regulate their downstream RNA targets. The cellular pathways that control FBXL5 degradation in low iron conditions are not well understood. Here, we report the identification of the STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) as a novel regulator of FBXL5 stability. We find that SPAK, a kinase previously implicated in osmotic stress regulation, regulates intracellular iron homeostasis through its physical association with FBXL5. This role is dependent on its kinase activity as overexpression of constitutively active SPAK increases FBXL5 poly-ubiquitination and degradation. Through this work, we have discovered a novel role for SPAK that extends beyond its well-established function in salt homeostasis and raises the possibility for signaling crosstalk between iron homeostatic and osmotic regulatory pathways.


1995 ◽  
Vol 95 (5) ◽  
pp. 2104-2110 ◽  
Author(s):  
B J Van Lenten ◽  
J Prieve ◽  
M Navab ◽  
S Hama ◽  
A J Lusis ◽  
...  

2000 ◽  
Vol 348 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Michela FESTA ◽  
Alfredo COLONNA ◽  
Concetta PIETROPAOLO ◽  
Alfredo RUFFO

We investigated the effect of oxalomalate (OMA, α-hydroxy-β-oxalosuccinic acid), a competitive inhibitor of aconitase, on the RNA-binding activity of the iron-regulatory proteins (IRP1 and IRP2) that control the post-transcriptional expression of various proteins involved in iron metabolism. The RNA-binding activity of IRP was evaluated by electrophoretic mobility-shift assay of cell lysates from 3T3-L1 mouse fibroblasts, SH-SY5Y human cells and mouse livers incubated in vitro with OMA, with and without 2-mercaptoethanol (2-ME). Analogous experiments were performed in vivo by prolonged incubation (72 h) of 3T3-L1 cells with OMA, and by injecting young mice with equimolar concentrations of oxaloacetate and glyoxylate, which are the precursors of OMA synthesis. OMA remarkably decreased the binding activity of IRP1 and, when present, of IRP2, in all samples analysed. In addition, the recovery of IRP1 by 2-ME in the presence of OMA was constantly lower versus control values. These findings suggest that the severe decrease in IRP1 RNA-binding activity depends on: (i) linking of OMA to the active site of aconitase, which prevents the switch to IRP1 and explains resistance to the reducing agents, and (ii) possible interaction of OMA with some functional amino acid residues in IRP that are responsible for binding to the specific mRNA sequences involved in the regulation of iron metabolism.


2015 ◽  
Vol 308 (2) ◽  
pp. G76-G84 ◽  
Author(s):  
Marie Laval ◽  
Graham S. Baldwin ◽  
Arthur Shulkes ◽  
Kathryn M. Marshall

Hypoxia, or a low concentration of O2, is encountered in humans undertaking activities such as mountain climbing and scuba diving and is important pathophysiologically as a limiting factor in tumor growth. Although data on the interplay between hypoxia and gastrins are limited, gastrin expression is upregulated by hypoxia in gastrointestinal cancer cell lines, and gastrins counterbalance hypoxia by stimulating angiogenesis in vitro and in vivo. The aim of this study was to determine if higher concentrations of the gastrin precursor progastrin are protective against hypoxia in vivo. hGAS mice, which overexpress progastrin in the liver, and mice of the corresponding wild-type FVB/N strain were exposed to normoxia or hypoxia. Iron status was assessed by measurement of serum iron parameters, real-time PCR for mRNAs encoding critical iron regulatory proteins, and Perls' stain and atomic absorption spectrometry for tissue iron concentrations. FVB/N mice lost weight at a faster rate and had higher sickness scores than hGAS mice exposed to hypoxia. Serum iron levels were lower in hGAS than FVB/N mice and decreased further when the animals were exposed to hypoxia. The concentration of iron in the liver was strikingly lower in hGAS than FVB/N mice. We conclude that increased circulating concentrations of progastrin provide a physiological advantage against systemic hypoxia in mice, possibly by increasing the availability of iron stores. This is the first report of an association between progastrin overexpression, hypoxia, and iron homeostasis.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1110
Author(s):  
Kunal Jhunjhunwala ◽  
Charles W. Dobard ◽  
Sunita Sharma ◽  
Natalia Makarova ◽  
Angela Holder ◽  
...  

Receptive anal intercourse (RAI) contributes significantly to HIV acquisition underscoring the need to develop HIV prevention options for populations engaging in RAI practices. We explored the feasibility of formulating rectal suppositories with potent antiviral drugs for on-demand use. A fixed-dose combination of tenofovir (TFV) and elvitegravir (EVG) (40 mg each) was co-formulated in six different suppository bases (three fat- and three water-soluble). Fat-soluble witepsol H15 and water-soluble polyethylene glycol (PEG) based suppositories demonstrated favorable in vitro release and were advanced to assess in vivo pharmacokinetics following rectal administration in macaques. In vivo drug release profiles were similar for both suppository bases. Median concentrations of TFV and EVG detected in rectal fluids at 2 h were 1- and 2-logs higher than the in vitro IC50, respectively; TFV-diphosphate levels in rectal tissues met or exceeded those associated with high efficacy against rectal simian HIV (SHIV) exposure in macaques. Leveraging on these findings, a PEG-based suppository with a lower dose combination of tenofovir alafenamide (TAF) and EVG (8 mg each) was developed and found to achieve similar rectal drug exposures in macaques. This study establishes the utility of rectal suppositories as a promising on-demand strategy for HIV PrEP and supports their clinical development.


Sign in / Sign up

Export Citation Format

Share Document