scholarly journals Inhalation Administration of Agarwood Incense Rescues Scopolamine-Induced Learning and Memory Impairment in Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Muxuan Han ◽  
Hao Zhang ◽  
Minghui Hu ◽  
Wei Sun ◽  
Zifa Li ◽  
...  

Background: Agarwood, a type of herbal medicine widely used in Asian countries, is noted in traditional medicine for its intelligence-enhancing effects. Agarwood incense is traditionally administered by oral and nasal inhalation. To verify whether agarwood incense can exert its intelligence-enhancing effects in this way to rescue learning and memory impairment, typical clinical manifestations of dementia, we conducted a set of behavioral tests related to learning and memory.Methods: C57BL/6 mice were divided into six groups. In addition to the control and model groups, we added a donepezil treatment group to evaluate the effect of three different agarwood administration doses. After a week of administration, scopolamine was injected 30 min before each behavioral test to create a learning and memory impairment model. A series of behavioral tests [the Morris water maze test (MWM), the novel object recognition test (NOR), and the step-down test (SDT)] were used to assess their learning ability, as well as their spatial and recognition memory.Results: After scopolamine injection, the model group showed significant learning and memory impairment (i.e., longer latencies, lower crossing times, and lesser distance travelled in the target quadrant in MWM; a lower recognition index in NOR; and longer latencies and higher error times in SDT). The other four treatment groups all showed improvements in these indicators, and the overall therapeutic effect of agarwood was superior.Conclusion: The inhalation administration of agarwood can significantly improve the learning and memory impairment caused by scopolamine in mice, and the therapeutic effect varied between doses.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gil-Yong Lee ◽  
Chan Lee ◽  
Gyu Hwan Park ◽  
Jung-Hee Jang

Increasing evidence suggests that neurodegenerative disorders such as Alzheimer’s disease (AD) are mediated via disruption of cholinergic neurons and enhanced oxidative stress. Therefore, attention has been focused on searching for antioxidant phytochemicals for the prevention and/or treatment of AD through their ability to fortify cholinergic function and antioxidant defense capacity. In this study, we have investigated the neuroprotective effect ofα-pinene (APN) against learning and memory impairment induced by scopolamine (SCO, 1 mg/kg, i.p.), a muscarinic receptor antagonist in C57BL/6 mice. Administration of APN (10 mg/kg, i.p.) significantly improved SCO-induced cognitive dysfunction as assessed by Y-maze and passive avoidance tests. In Morris water-maze test, APN effectively shortened the mean escape latency to find the hidden platform during training days. To further elucidate the molecular mechanisms underlying the neuroprotective effect of APN, the expression of proteins involved in the acetylcholine metabolism and antioxidant system was examined. Particularly, APN treatment increased mRNA expression of choline acetyltransferase in the cortex and protein levels of antioxidant enzymes such as heme oxygenase-1 and manganese superoxide dismutase in the hippocampus via activation of NF-E2-related factor 2. These findings suggest the possible neuroprotective potentials of APN for the management of dementia with learning and memory loss.


2013 ◽  
Vol 411-414 ◽  
pp. 3178-3180
Author(s):  
Li Hai Jin ◽  
Xing Yu Zhao ◽  
Wei Zhang ◽  
Wei Chen ◽  
Guo Qing Sun ◽  
...  

We assessed the effectiveness and mechanism of action of Soybean Isoflavones on learning and memory and Caspase-3 levels in the hippocampus of rats after Morris water maze (MWM test). Soybean Isoflavones (200,400 or 800 mg/kg/d) were administered by intragavage once daily for 14 consecutive days. The Morris water maze test was used to evaluate the ability of Soybean Isoflavones to increase learning and memory impairment. The levels of Caspase-3 in hippocampus of rats were detected by Westernblot after MWM test. Compared to untreated controls (P<0.01), MWM could be prolonged after Soybean Isoflavones treatment (P<0.05 for="" low="" and="" intermediate="" dose="" groups="" westernblot="" analysis="" showed="" that="" the="" protein="" expression="" of="" caspase-3="" was="" decreased="" in="" different="" concentration="" soybean="" isoflavones="" i="">P<0.05 and="" i="">P<0.01, respectively). The results suggest that Soybean Isoflavones is effective in improving the learning and memory in rats , the mechanism of which may be related Caspase ways.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Kuo-Jen Wu ◽  
Ming-Tsuen Hsieh ◽  
Chi-Rei Wu ◽  
W. Gibson Wood ◽  
Yuh-Fung Chen

Ischemic stroke results in brain damage and behavioral deficits including memory impairment. Protective effects of green tea extract (GTex) and its major functional polyphenol (−)-epigallocatechin gallate (EGCG) on memory were examined in cerebral ischemic rats. GTex and EGCG were administered 1 hr before middle cerebral artery ligation in rats. GTex, EGCG, and pentoxifylline (PTX) significantly improved ishemic-induced memory impairment in a Morris water maze test. Malondialdehyde (MDA) levels, glutathione (GSH), and superoxide dismutase (SOD) activity in the cerebral cortex and hippocampus were increased by long-term treatment with GTex and EGCG. Both compounds were also associated with reduced cerebral infraction breakdown of MDA and GSH in the hippocampus. Inin vitroexperiments, EGCG had anti-inflammatory effects in BV-2 microglia cells. EGCG inhibited lipopolysaccharide- (LPS-) induced nitric oxide production and reduced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV-2 cells. GTex and its active polyphenol EGCG improved learning and memory deficits in a cerebral ischemia animal model and such protection may be due to the reduction of oxidative stress and neuroinflammation.


2020 ◽  
Author(s):  
Kazunori Sasaki ◽  
Noelia Geribaldi-Doldan ◽  
Qingqing Wu ◽  
Julie Davies ◽  
Francis G. Szele ◽  
...  

Abstract Background Much attention has recently focused on nutraceuticals which are widely used to promote health. In particular, nutraceuticals with minimal side effects have been developed for preventing or treating neurological diseases such as Alzheimer’s disease (AD). The present study was conducted to investigate the potential effect on neural development and function of the microalgae Aurantiochytrium sp. as a nutraceutical. Methods To test the neuroprotection of ethanol extract of Aurantiochytrium (EEA) and n-Hex layer of EEA (HEEA), amyloid-beta (Aβ)-stimulated SH-SY5Y cells was used for in vitro AD model. We then assessed the enhancement of neurogenesis of EEA and HEEA using murine ex vivo neurospheres. We also administered EEA or HEEA to SAMP8 mice, a non-transgenic strain with accelerated aging and Alzheimer’s-like memory loss for evaluation of spatial learning and memory using MWM test. Finally, we performed immunohistochemical analysis using mice brain fed with EEA for assessment of neurogenesis. Results Pre-treatment of SH-SY5Y cells with EEA or the squalene-rich fraction of EEA, n-Hex layer (HEEA), ameliorated Aβ-induced cytotoxicity. Interestingly, only EEA-treated cells showed a significant increase in cell metabolism and intracellular ATP production. Moreover, EEA treatment significantly increased the number of neurospheres, whilst HEEA treatment significantly increased the number of β-III-tubulin + young neurons and GFAP + astrocytes. SAMP8 mice were given 50 mg/kg EEA or HEEA orally for 30 days. Learning ability was assessed in the Morris water maze test. EEA and HEEA decreased escape latency time in SAMP8 mice, indicating improved memory. To detect activated stem cells and newborn neurons, we administered BrdU for 9 days and measured BrdU + cells in the dentate gyrus, a neurogenic stem cell niche of the hippocampus. In SAMP8 mice, EEA rapidly and significantly increased the number of BrdU + GFAP + stem cells as well as their progeny, BrdU + NeuN + mature neurons. Conclusions Our data in aggregate indicate that EEA and its constituents could be developed into a nutraceutical for promoting brain health and function against some age-related diseases including neurodegenerative desease, particularly AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lijuan Huang ◽  
Yijie Shi ◽  
Liang Zhao

Ginkgobalide B (GB) as the main active ingredient of traditional Chinese medicine Ginkgo biloba extract is reported to reduce neuroinflammation, protect neurons and promote cognitive learning ability. To explore that GB can reduce neuroinflammation through regulating nuclear factor-kappaB (NF-κB) signaling pathway and overcome cognitive dysfunction in rats with vascular dementia (VD), we aim at investigating the potential effect of GB on enhancing cognitive function in rats with VD. It was found that GB improved survival of oxygen-glucose deprivation (OGD) treated SH-SY5Y cells by attenuating inflammatory response via Toll-like Receptor 4 (TLR4)/NF-κB pathway. When rats were treated with bilateral common carotid artery occlusion (BCCAO) for 24 h, saline and GB were administered in Sprague-Dawley (SD) rats via a single intraperitoneal injection for consecutive 14 days. The behavioral changes of VD like rats treated with GB were observed through open field test, Morris water maze (MWM) and Y-maze electric maze. Nissl staining and immunofluorescence were used to observe changes of neurons in the hippocampus of rats. Western blot analysis was performed by detecting NF-κB pathway related inflammatory factors. The results found that GB can significantly improve the learning and memory ability of VD rats by reducing TLR4/NF-κB mediated neuroinflammation. In conclusion, GB seemed to be a potential drug for amelioration of learning and memory impairment in rats with VD.


2020 ◽  
Vol 15 (3) ◽  
pp. 1934578X1990068
Author(s):  
Shu Jing ◽  
Cong Liu ◽  
Huijiao Lin ◽  
Xinyun Zhang ◽  
Fei Wang ◽  
...  

Memory disorders are the main symptoms of aging and Alzheimer’s disease and seriously affect the quality of life. Schisandra, as a famous traditional Chinese medicine, has been used for modulating “the internal organs” for a thousand years. The total lignans from Schisandra have been scientifically proved to improve learning and memory ability. Since it is unclear which monomer in Schisandra total lignans exerts such a function, we evaluated the potential effects of Schisantherin A (SCA), the main monomer from Schisandra, on improving learning ability and memory in amyloid β-protein (Aβ1-42)-induced Alzheimer’s disease (AD) model mice. We found that SCA (5 mg/kg) significantly prolonged the latency and reduced the number of errors in a step-through test. SCA significantly shortened the time of finding the platform and increased the number of crossing the platform and the residence time in a Morris water maze test. SCA increased superoxide dismutase activities and reduced the Malondialdehyde level of the hippocampal tissue, suggesting its role in reducing oxidative stress in the AD mice. Furthermore, we found that SCA significantly decreased the hyperphosphorylation of Tau by altering glycogen synthase kinase-3β (GSK-3β) phosphorylation on Tyr216 and Ser9. Our results revealed the mechanism underlying SCA-mediated learning and memory improvement by regulating GSK-3β activity and lowering the hyperphosphorylation of Tau protein in the hippocampus of AD mice.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xue-Fei Ji ◽  
Tian-Yan Chi ◽  
Qian Xu ◽  
Xiao-Lu He ◽  
Xiao-Yu Zhou ◽  
...  

The effects of xanthoceraside on learning and memory impairment were investigated and the possible mechanism associated with the protection of mitochondria was also preliminarily explored in Alzheimer’s disease (AD) mice model induced by intracerebroventricular (i.c.v.) injection of Aβ1-42. The results indicated that xanthoceraside (0.08–0.32 mg/kg) significantly improved learning and memory impairment in Morris water maze test and Y-maze test. Xanthoceraside significantly reversed the aberrant decrease of ATP levels and attenuated the abnormal increase of ROS levels both in the cerebral cortex and hippocampus in mice injected with Aβ1-42. Moreover, xanthoceraside dose dependently reversed the decrease of COX, PDHC, and KGDHC activity in isolated cerebral cortex mitochondria of the mice compared with Aβ1-42 injected model mice. In conclusion, xanthoceraside could improve learning and memory impairment, promote the function of mitochondria, decrease the production of ROS, and inhibit oxidative stress. The improvement effects on mitochondria may be through withstanding the damage of Aβto mitochondrial respiratory chain and the key enzymes in Kreb’s cycle. Therefore, the results from present study and previous study indicate that xanthoceraside could be a competitive candidate for the treatment of AD.


2016 ◽  
Vol 15 (2) ◽  
pp. 169-177
Author(s):  
Phanit KOOMHIN ◽  
Apsorn SATTAYAKHOM ◽  
Sarawoot PALIPOCH ◽  
Chuchard PUNSAWAD ◽  
Sompol TAPECHUM

One of the most popular learning and memory tests is the Morris water maze. The Morris water maze is a circular pool filled with water with a hidden platform under the water surface. The test is appropriate for rodents, especially rats and mice. The testing protocol comprises 2 parts that evaluate learning ability and memory retention. When animals are placed in the pool, they experience stress, which is the driving force for discovery of a strategy to leave the water. In the experiment, animals use environmental cues to find the location of the hidden platform in the pool. After consecutive training days, animals can more quickly locate the hidden platform. The last day of the task involves a memory test without the platform. It shows a limitation of the test in mild learning and memory deficit models such as 2-vessel occlusion. Differences between the normal and memory impairment models are expressed only in a narrow range. So, we tried to modify the original protocol for mild learning and memory impairment models. We used an albino rat strain for the experiment. A pre-training strategy of 3 days of swimming in the pool with a visible platform prior to the ordinary task was used. The results suggest that this pre-training strategy improved learning and memory in the rat model. When compared to normal rats and 2-vessel occlusion rats (a rat model for vascular dementia), those that participated in the pre-training strategy showed an increase in the percent difference of area under the curve for learning trials. In conclusion, the pre-training strategy increases ability to discriminate learning and memory impairment in the rat model, especially for the mild learning and memory deficit models.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Guangxin Yuan ◽  
Liping An ◽  
Yunpeng Sun ◽  
Guangyu Xu ◽  
Peige Du

Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.


2014 ◽  
Vol 912-914 ◽  
pp. 1957-1960
Author(s):  
Ying Li ◽  
Xing Yu Zhao ◽  
Xue Lian Jin ◽  
Guo Qing Sun ◽  
Song Liu ◽  
...  

We assessed the effectiveness and mechanism of action of Pecan oil on learning and memory and NF-κB levels in the hippocampus of rats after Morris water maze (MWM test). Pecan oil (200,400 or 800 mg/kg/d) were administered by intragavage once daily for 14 consecutive days. The Morris water maze test was used to evaluate the ability of Pecan oil to increase learning and memory impairment. The levels of NF-κB in hippocampus of rats were detected by Westernblot after MWM test. Compared to untreated controls (P<0.01), MWM could be prolonged after Pecan oil treatment (P<0.05 for low and intermediate dose groups). Westernblot analysis showed that the protein expression of NF-κB was decreased in different concentration Pecan oil(P<0.05 and P<0.01, respectively). The results suggest that Pecan oil is effective in improving the learning and memory in rats, the mechanism of which may be related NF-κB expression decreasing.


Sign in / Sign up

Export Citation Format

Share Document