scholarly journals Equitable Domination in Vague Graphs With Application in Medical Sciences

2021 ◽  
Vol 9 ◽  
Author(s):  
Yongsheng Rao ◽  
Saeed Kosari ◽  
Zehui Shao ◽  
Xiaoli Qiang ◽  
Maryam Akhoundi ◽  
...  

Considering all physical, biological, and social systems, fuzzy graph (FG) models serve the elemental processes of all natural and artificial structures. As the indeterminate information is an essential real-life problem, which is mostly uncertain, modeling the problems based on FGs is highly demanding for an expert. Vague graphs (VGs) can manage the uncertainty relevant to the inconsistent and indeterminate information of all real-world problems, in which FGs possibly will not succeed in bringing about satisfactory results. In addition, VGs are a very useful tool to examine many issues such as networking, social systems, geometry, biology, clustering, medical science, and traffic plan. The previous definition restrictions in FGs have made us present new definitions in VGs. A wide range of applications has been attributed to the domination in graph theory for several fields such as facility location problems, school bus routing, modeling biological networks, and coding theory. Concepts from domination also exist in problems involving finding the set of representatives, in monitoring communication and electrical networks, and in land surveying (e.g., minimizing the number of places a surveyor must stand in order to take the height measurement for an entire region). Hence, in this article, we introduce different concepts of dominating, equitable dominating, total equitable dominating, weak (strong) equitable dominating, equitable independent, and perfect dominating sets in VGs and also investigate their properties by some examples. Finally, we present an application in medical sciences to show the importance of domination in VGs.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaoli Qiang ◽  
Maryam Akhoundi ◽  
Zheng Kou ◽  
Xinyue Liu ◽  
Saeed Kosari

VG can manage the uncertainty relevant to the inconsistent and indeterminate information of all real-world problems, in which FGs possibly will not succeed in bringing about satisfactory results. The previous definitions’ restrictions in FGs have made us present new definitions in VGs. A wide range of applications have been attributed to the domination in graph theory for several fields such as facility location problem, school bus routing, modeling biological networks, and coding theory. Therefore, in this research, we study several concepts of domination, such as restrained dominating set (RDS), perfect dominating set (PDS), global restrained dominating set (GRDS), total k -dominating set, and equitable dominating set (EDS) in VGs and also introduce their properties by some examples. Finally, we try to represent the application and importance of domination in the field of medical science and discuss the topic in today’s world, namely, the corona vaccine.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1885
Author(s):  
Yongsheng Rao ◽  
Saeed Kosari ◽  
Zehui Shao ◽  
Ruiqi Cai ◽  
Liu Xinyue

Fuzzy graphs (FGs), broadly known as fuzzy incidence graphs (FIGs), have been acknowledged as being an applicable and well-organized tool to epitomize and solve many multifarious real-world problems in which vague data and information are essential. Owing to unpredictable and unspecified information being an integral component in real-life problems that are often uncertain, it is highly challenging for an expert to illustrate those problems through a fuzzy graph. Therefore, resolving the uncertainty accompanying the unpredictable and unspecified information of any real-world problem can be done by applying a vague incidence graph (VIG), based on which the FGs may not engender satisfactory results. Similarly, VIGs are outstandingly practical tools for analyzing different computer science domains such as networking, clustering, and also other issues such as medical sciences, and traffic planning. Dominating sets (DSs) enjoy practical interest in several areas. In wireless networking, DSs are being used to find efficient routes with ad-hoc mobile networks. They have also been employed in document summarization, and in secure systems designs for electrical grids; consequently, in this paper, we extend the concept of the FIG to the VIG, and show some of its important properties. In particular, we discuss the well-known problems of vague incidence dominating set, valid degree, isolated vertex, vague incidence irredundant set and their cardinalities related to the dominating, etc. Finally, a DS application for VIG to properly manage the COVID-19 testing facility is introduced.


2018 ◽  
Vol 09 (02) ◽  
pp. 1850001
Author(s):  
Bilal Ahmad Para ◽  
Tariq Rashid Jan

In this paper, we introduce a new discrete model by compounding two parameter discrete Weibull distribution with Beta distribution of first kind. The proposed model can be nested to different compound distributions on specific parameter settings. The model is a good competitive for zero-inflated models. In addition, we present the basic properties of the new distribution and discuss unimodality, failure rate functions and index of dispersion. Finally, the model is examined with real-life count data from medical sciences to investigate the suitability of the proposed model.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1582
Author(s):  
Saeed Kosari ◽  
Yongsheng Rao ◽  
Huiqin Jiang ◽  
Xinyue Liu ◽  
Pu Wu ◽  
...  

Fuzzy graph models enjoy the ubiquity of being in natural and human-made structures, namely dynamic process in physical, biological and social systems. As a result of inconsistent and indeterminate information inherent in real-life problems which are often uncertain, it is highly difficult for an expert to model those problems based on a fuzzy graph (FG). Vague graph structure (VGS) can deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problem, where fuzzy graphs may fail to reveal satisfactory results. Likewise, VGSs are very useful tools for the study of different domains of computer science such as networking, capturing the image, clustering, and also other issues like bioscience, medical science, and traffic plan. The limitations of past definitions in fuzzy graphs have led us to present new definitions in VGSs. Operations are conveniently used in many combinatorial applications. In various situations, they present a suitable construction means; therefore, in this research, three new operations on VGSs, namely, maximal product, rejection, residue product were presented, and some results concerning their degrees and total degrees were introduced. Irregularity definitions have been of high significance in the network heterogeneity study, which have implications in networks found across biology, ecology and economy; so special concepts of irregular VGSs with several key properties were explained. Today one of the most important applications of decision making is in medical science for diagnosing the patient’s disease. Hence, we recommend an application of VGS in medical diagnosis.


2020 ◽  
Vol 20 (16) ◽  
pp. 1619-1632
Author(s):  
Katarzyna Pieklarz ◽  
Michał Tylman ◽  
Zofia Modrzejewska

The currently observed development of medical science results from the constant search for innovative solutions to improve the health and quality of life of patients. Particular attention is focused on the design of a new generation of materials with a high degree of biocompatibility and tolerance towards the immune system. In addition, apart from biotolerance, it is important to ensure appropriate mechanical and technological properties of materials intended for intra-body applications. Knowledge of the above parameters becomes the basis for considerations related to the possibilities of choosing the appropriate polymer materials. The researchers' interest, as evidenced by the number of available publications, is attracted by nanobiocomposites based on chitosan and carbon nanotubes, which, due to their properties, enable integration with the tissues of the human body. Nanosystems can be used in many areas of medicine. They constitute an excellent base for use as dressing materials, as they exhibit antimicrobial properties. In addition, they can be carriers of drugs and biological macromolecules and can be used in gene therapy, tissue engineering, and construction of biosensors. For this reason, potential application areas of chitosan-carbon nanotube nanocomposites in medical sciences are presented in this publication, considering the characteristics of the system components.


Author(s):  
Dr. Jyotsna Sankpal ◽  
Dr. Jyotsna Takalikar

Rasa Shastra and Bhaishajya Kalpana is branch of the ancient Indian medical science based on herbs and herbo-mineral preparation. Tankana has been described under Uparasa Tankana, which is one among the Kshara Trayas has been used since very long time in Ayurveda. It has a wide range of therapeutic applications, including diseases like Varna (ulcers), Shvasa (asthma), Kasa (cough), Hrudya (beneficial to heart disease), Streepushpajanana (menstrual disorders) etc. It is used in the form of compound formulations like Parpati, Kupipakwa, Khalvee Rasayana, Churna, Vati, Lepa etc. In this paper Tankana Shodhana procedure, different synonyms, dose, Anupana, indications and different formulations containing Tankana Bhasma has been discussed.


2020 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Shelina Bhamani ◽  
Areeba Zainab Makhdoom ◽  
Vardah Bharuchi ◽  
Nasreen Ali ◽  
Sidra Kaleem ◽  
...  

<p align="center"><em>The widespread prevalence of COVID-19 pandemic has affected academia and parents alike. Due to the sudden closure of schools, students are missing social interaction which is vital for better learning and grooming while most schools have started online classes. This has become a tough routine for the parents working online at home since they have to ensure their children’s education. The study presented was designed to explore the experiences of home learning in times of COVID-19. A descriptive qualitative study was planned to explore the experiences of parents about home learning and management during COVID-19 to get an insight into real-life experiences.  Purposive sampling technique was used for data collection.  Data were collected from 19 parents falling in the inclusion criteria. Considering the lockdown problem, the data were collected via Google docs form with open-ended questions related to COVID-19 and home learning. Three major themes emerged after the data analysis: impact of COVID on children learning; support given by schools; and strategies used by caregivers at home to support learning. It was analyzed that the entire nation and academicians around the world have come forward to support learning at home offering a wide range of free online avenues to support parents to facilitate home-learning. Furthermore, parents too have adapted quickly to address the learning gap that have emerged in their children’s learning in these challenging times. Measures should be adopted to provide essential learning skills to children at home. Centralized data dashboards and educational technology may be used to keep the students, parents and schools updated.</em></p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1346
Author(s):  
Andreas Breitwieser ◽  
Uwe B. Sleytr ◽  
Dietmar Pum

Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (−24.4 +/− 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/− 1.25 nm after 5 min and 25.0 +/− 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Spyridoula Vazou ◽  
Collin A. Webster ◽  
Gregory Stewart ◽  
Priscila Candal ◽  
Cate A. Egan ◽  
...  

Abstract Background/Objective Movement integration (MI) involves infusing physical activity into normal classroom time. A wide range of MI interventions have succeeded in increasing children’s participation in physical activity. However, no previous research has attempted to unpack the various MI intervention approaches. Therefore, this study aimed to systematically review, qualitatively analyze, and develop a typology of MI interventions conducted in primary/elementary school settings. Subjects/Methods Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to identify published MI interventions. Irrelevant records were removed first by title, then by abstract, and finally by full texts of articles, resulting in 72 studies being retained for qualitative analysis. A deductive approach, using previous MI research as an a priori analytic framework, alongside inductive techniques were used to analyze the data. Results Four types of MI interventions were identified and labeled based on their design: student-driven, teacher-driven, researcher-teacher collaboration, and researcher-driven. Each type was further refined based on the MI strategies (movement breaks, active lessons, other: opening activity, transitions, reward, awareness), the level of intrapersonal and institutional support (training, resources), and the delivery (dose, intensity, type, fidelity). Nearly half of the interventions were researcher-driven, which may undermine the sustainability of MI as a routine practice by teachers in schools. An imbalance is evident on the MI strategies, with transitions, opening and awareness activities, and rewards being limitedly studied. Delivery should be further examined with a strong focus on reporting fidelity. Conclusions There are distinct approaches that are most often employed to promote the use of MI and these approaches may often lack a minimum standard for reporting MI intervention details. This typology may be useful to effectively translate the evidence into practice in real-life settings to better understand and study MI interventions.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Vincent Vandewalle ◽  
Alexandre Caron ◽  
Coralie Delettrez ◽  
Renaud Périchon ◽  
Sylvia Pelayo ◽  
...  

Abstract Background Usability testing of medical devices are mandatory for market access. The testings’ goal is to identify usability problems that could cause harm to the user or limit the device’s effectiveness. In practice, human factor engineers study participants under actual conditions of use and list the problems encountered. This results in a binary discovery matrix in which each row corresponds to a participant, and each column corresponds to a usability problem. One of the main challenges in usability testing is estimating the total number of problems, in order to assess the completeness of the discovery process. Today’s margin-based methods fit the column sums to a binomial model of problem detection. However, the discovery matrix actually observed is truncated because of undiscovered problems, which corresponds to fitting the marginal sums without the zeros. Margin-based methods fail to overcome the bias related to truncation of the matrix. The objective of the present study was to develop and test a matrix-based method for estimating the total number of usability problems. Methods The matrix-based model was based on the full discovery matrix (including unobserved columns) and not solely on a summary of the data (e.g. the margins). This model also circumvents a drawback of margin-based methods by simultaneously estimating the model’s parameters and the total number of problems. Furthermore, the matrix-based method takes account of a heterogeneous probability of detection, which reflects a real-life setting. As suggested in the usability literature, we assumed that the probability of detection had a logit-normal distribution. Results We assessed the matrix-based method’s performance in a range of settings reflecting real-life usability testing and with heterogeneous probabilities of problem detection. In our simulations, the matrix-based method improved the estimation of the number of problems (in terms of bias, consistency, and coverage probability) in a wide range of settings. We also applied our method to five real datasets from usability testing. Conclusions Estimation models (and particularly matrix-based models) are of value in estimating and monitoring the detection process during usability testing. Matrix-based models have a solid mathematical grounding and, with a view to facilitating the decision-making process for both regulators and device manufacturers, should be incorporated into current standards.


Sign in / Sign up

Export Citation Format

Share Document