scholarly journals Climate Change Characteristics of Coastal Wind Energy Resources in Zhejiang Province Based on ERA-Interim Data

2021 ◽  
Vol 9 ◽  
Author(s):  
Nan Wang ◽  
Kai-Peng Zhou ◽  
Kuo Wang ◽  
Tao Feng ◽  
Yu-Hui Zhang ◽  
...  

The reanalysis of sea surface wind speed is compared with the measured wind speed of five offshore wind towers in Zhejiang, China. The applicability of reanalysis data in the Zhejiang coastal sea surface and the climatic characteristics of sea surface wind power density is analyzed. Results show that the reanalysis of wind field data at the height of 10 m can well capture the wind field characteristics of the actual sea surface wind field. The sea surface wind power density effective hours increases from west to east and north to south. Then Empirical orthogonal function (EOF) is used to analyze the sea surface wind power density anomaly field, and the first mode is a consistent pattern, the second mode is a North-South dipole pattern, the third mode is an East-West dipole pattern respectively. The stability of wind energy resources grows more stable with increasing distance from the coast, and the northern sea area which is far away from the coastal sea is more stable than that of the southern sea area. The yearly linear trend of sea surface wind power density is in an East-West dipole pattern respectively. The wind energy resources are more stable farther from the coast, and the wind energy resources in the northern sea are more stable than that of the southern sea. The yearly linear trend of sea surface wind power density is the East-West dipole type, the seasonal linear trend is a significant downward trend from West to East in spring, and on the contrary in summer, a non-significant trend in autumn and winter. The monthly change index shows that the linear trend near the entrance of Hangzhou Bay in Northern Zhejiang is of weak increase or decrease, which is good for wind energy development. When the wind power density is between 0 and 150 W·m−2, its frequency mainly shows the distribution trend of high in the West and low in the East, but the wind power density is between 150 and 600 W·m−2, its distribution is the opposite.

2020 ◽  
Vol 20 (2) ◽  
pp. 143-153
Author(s):  
Nguyen Xuan Tung ◽  
Do Huy Cuong ◽  
Bui Thi Bao Anh ◽  
Nguyen Thi Nhan ◽  
Tran Quang Son

Since the East Vietnam Sea has an advantageous geographical location and rich natural resources, we can develop and manage islands and reefs in this region reasonably to declare national sovereignty. Based on 1096 scenes of QuikSCAT wind data of 2006–2009, wind power density at 10 m hight is calculated to evaluate wind energy resources of the East Vietnam Sea. With a combination of wind power density at 70 m hight calculated according to the power law of wind energy profile and reef flats extracted from 35 scenes of Landsat ETM+ images, installed wind power capacity of every island or reef is estimated to evaluate wind power generation of the East Vietnam Sea. We found that the wind power density ranges from levels 4–7, so that the wind energy can be well applied to wind power generation. The wind power density takes on a gradually increasing trend in seasons. Specifically, the wind power density is lower in spring and summer, whereas it is higher in autumn and winter. Among islands and reefs in the East Vietnam Sea, the installed wind power capacity of Hoang Sa archipelago is highest in general, the installed wind power capacity of Truong Sa archipelago is at the third level. The installed wind power capacity of Discovery Reef, Bombay Reef, Tree island, Lincoln island, Woody Island of Hoang Sa archipelago and Mariveles Reef, Ladd Reef, Petley Reef, Cornwallis South Reef of Truong Sa archipelago is relatively high, and wind power generation should be developed on these islands first.


Author(s):  
Darko Koracin ◽  
Richard L. Reinhardt ◽  
Marshall B. Liddle ◽  
Travis McCord ◽  
Domagoj Podnar ◽  
...  

The main objectives of the study were to support wind energy assessment for all of Nevada by providing two annual cycles of high-resolution mesoscale modeling evaluated by data from surface stations and towers, estimating differences between these annual cycles and standard wind maps, and providing wind and wind power density statistics at elevations relevant to turbine operations. In addition to the 65 existing Remote Automated Weather Stations in Nevada, four 50-m-tall meteorological towers were deployed in western Nevada to capture long-term wind characteristics and provide database input to verify and improve modeling results. The modeling methodology using Mesoscale Model 5 (MM5) was developed to provide wind and wind power density estimates representing mesoscale effects that include actual synoptic forcing during the two annual cycles (horizontal resolution on the order of 2 and 3 km). The results from the two annual simulation cycles show similar wind statistics with an average difference of less than 100 W/m2. The available TrueWind results for the wind power density at 50 m show greater values of wind power density compared to both MM5-simulated annual cycles for most of the area. However, mainly in the Sierras and the mountainous regions of southern and eastern Nevada, the MM5 simulations indicate greater values for wind power density. The results of this study suggest that the synthesis of the data from a network of tower observations and high-resolution mesoscale modeling is a crucial tool for assessing the wind power density in Nevada and, more generally, other topographically developed areas.


2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


2019 ◽  
Vol 38 (1) ◽  
pp. 175-200 ◽  
Author(s):  
Shafiqur Rehman ◽  
Narayanan Natarajan ◽  
Mangottiri Vasudevan ◽  
Luai M Alhems

Wind energy is one of the abundant, cheap and fast-growing renewable energy sources whose intensive extraction potential is still in immature stage in India. This study aims at the determination and evaluation of wind energy potential of three cities located at different elevations in the state of Tamil Nadu, India. The historical records of wind speed, direction, temperature and pressure were collected for three South Indian cities, namely Chennai, Erode and Coimbatore over a period of 38 years (1980-2017). The mean wind power density was observed to be highest at Chennai (129 W/m2) and lowest at Erode (76 W/m2) and the corresponding mean energy content was highest for Chennai (1129 kWh/m2/year) and lowest at Erode (666 kWh/m2/year). Considering the events of high energy-carrying winds at Chennai, Erode and Coimbatore, maximum wind power density were estimated to be 185 W/m2, 190 W/m2 and 234 W/m2, respectively. The annual average net energy yield and annual average net capacity factor were selected as the representative parameters for expressing strategic wind energy potential at geographically distinct locations having significant variation in wind speed distribution. Based on the analysis, Chennai is found to be the most suitable site for wind energy production followed by Coimbatore and Erode.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1846 ◽  
Author(s):  
Teklebrhan Negash ◽  
Erik Möllerström ◽  
Fredric Ottermo

This paper presents the wind energy potential and wind characteristics for 25 wind sites in Eritrea, based on wind data from the years 2000–2005. The studied sites are distributed all over Eritrea, but can roughly be divided into three regions: coastal region, western lowlands, and central highlands. The coastal region sites have the highest potential for wind power. An uncertainty, due to extrapolating the wind speed from the 10-m measurements, should be noted. The year to year variations are typically small and, for the sites deemed as suitable for wind power, the seasonal variations are most prominent in the coastal region with a peak during the period November–March. Moreover, Weibull parameters, prevailing wind direction, and wind power density recalculated for 100 m above ground are presented for all 25 sites. Comparing the results to values from the web-based, large-scale dataset, the Global Wind Atlas (GWA), both mean wind speed and wind power density are typically higher for the measurements. The difference is especially large for the more complex-terrain central highland sites where GWA results are also likely to be more uncertain. The result of this study can be used to make preliminary assessments on possible power production potential at the given sites.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Chengyu Li ◽  
Qunwei Wang ◽  
Peng Zhou

Although China’s wind industry has made great progress in recent years, the wind abandonment phenomenon caused by the unbalanced development of regional wind power is still prominent. It is particularly important for the scientific development of wind power to accurately measure the utilization efficiency of wind power and understand its regional differences in China. This study establishes the improved super-efficiency slack-based measure (Super-SBM) model and long short-term memory (LSTM) network models, systematically and comprehensively measures and predicts the wind power utilization efficiency of 30 regions in China from 2013 to 2020, and explores regional differences in wind power utilization efficiency. Our results show the following: (1) China’s overall wind power utilization efficiency is relatively low but has been on a steady upward trend since 2013. (2) Regional differences are obvious, showing that the spatial distribution pattern of wind power utilization efficiency is greatest in Northeast China, followed by North China, East China, South China, Northwest China, and Central China. The “Three-North” region with abundant wind energy resources has relatively high wind power utilization efficiency and exhibits a good development trend. East China, South China, and Central China, where wind energy resources are relatively poor, have low wind power utilization efficiency, and their development trends are not stable and are more prone to change. (3) The utilization efficiency of wind power in coastal areas is generally better than that in inland areas. There are also differences among the thirty Chinese regions studied. Inner Mongolia and Shandong have achieved real efficiency in wind power utilization efficiency, with optimal allocation of input and output, and a good development trend. The other 28 regions have varying degrees of inefficiency, and there is still room for improvement.


2020 ◽  
pp. 014459872092074 ◽  
Author(s):  
Muhammad Sumair ◽  
Tauseef Aized ◽  
Syed Asad Raza Gardezi ◽  
Syed Ubaid Ur Rehman ◽  
Syed Muhammad Sohail Rehman

Current work focusses on the wind potential assessment in South Punjab. Eleven locations from South Punjab have been analyzed using two-parameter Weibull model (with Energy Pattern Factor Method to estimate Weibull parameters) and five years (2014–2018) hourly wind data measured at 50 m height and collected from Pakistan Meteorological Department. Techno-economic analysis of energy production using six different turbine models was carried out with the purpose of presenting a clear picture about the importance of turbine selection at particular location. The analysis showed that Rahim Yar Khan carries the highest wind speed, highest wind power density, and wind energy density with values 4.40 ms−1, 77.2 W/m2 and 677.76 kWh/m2/year, respectively. On the other extreme, Bahawalnagar observes the least wind speed i.e. 3.60 ms−1 while Layyah observes the minimum wind power density and wind energy density as 38.96 W/m2 and 352.24 kWh/m2/year, respectively. According to National Renewable Energy Laboratory standards, wind potential ranging from 0 to 200 W/m2 is considered poor. Economic assessment was carried out to find feasibility of the location for energy harvesting. Finally, Polar diagrams drawn to show the optimum wind blowing directions shows that optimum wind direction in the region is southwest.


2017 ◽  
Vol 32 (1) ◽  
pp. 93-102
Author(s):  
Maciej Kałas ◽  
Piotr Piotrowski

The article presents spatial characteristics of energy fluxes recorded in the area of the Polish Exclusive Economic Zone (EEZ) in the four-year period of 2013–16. Data presented in this work are based on results of forecast calculations with the application of numerical models of the atmosphere (HIRLAM) and sea (WAM and HIROMB). Conducted analyses were concerned with dynamics of physical phenomena above the sea surface (wind), on its surface (wind waves motion), and in its near-surface layer up to 4 m (seawater flows). Physical energy resources connected with these processes for subsequent four years were computed and compared with the amount of annual electricity output generated by conventional and renewable sources of energy. Such an analysis of estimated energy resources reveals that the resource is highly differentiated in terms of space and in individual years, and significantly exceed the annual production of Polish power plants.


2012 ◽  
pp. 29-33
Author(s):  
S. Asghar Gholamian ◽  
S. Bagher Soltani ◽  
R. Ilka

First step for achieving wind energy is to locate points with appropriate wind power density in a country. Wind data which are recorded in a synoptic weather station, are the best way to study the wind potential of an area. In this paper wind speed period of Baladeh synoptic weather station is studied, since it has the maximum average of wind speed among 15 stations of the MAZANDARAN Province. Weibull factors k and c are calculated for 40 months from September 2006 to December 2009 and wind power density is determined based on these data. The total average of factors k and c for a height for 50 m are 1.442 m/s and 5.1256 respectively. By using the average of factors, wind power density in 50 m height will be 147.40 watt/m2 which is categorized as weak potential in wind class. However by monthly investigation it is shown that with a 50 m wind, this station can be put in medium class in hot months of the year.


Sign in / Sign up

Export Citation Format

Share Document