scholarly journals Regulation of Peroxisome Proliferator-Activated Receptor Pathway During Torpor in the Garden Dormouse, Eliomys quercinus

2020 ◽  
Vol 11 ◽  
Author(s):  
Alexander J. Watts ◽  
Samantha M. Logan ◽  
Anna Kübber-Heiss ◽  
Annika Posautz ◽  
Gabrielle Stalder ◽  
...  

Differential levels of n-6 and n-3 essential polyunsaturated fatty acids (PUFAs) are incorporated into the hibernator’s diet in the fall season preceding prolonged, multi-days bouts of torpor, known as hibernation. Peroxisome proliferator-activated receptor (PPAR) transcriptional activators bind lipids and regulate genes involved in fatty acid transport, beta-oxidation, ketogenesis, and insulin sensitivity; essential processes for survival during torpor. Thus, the DNA-binding activity of PPARα, PPARδ, PPARγ, as well as the levels of PPARγ coactivator 1α (PGC-1α) and L-fatty acid binding protein (L-FABP) were investigated in the hibernating garden dormouse (Eliomys quercinus). We found that dormice were hibernating in a similar way regardless of the n-6/n-3 PUFA diets fed to the animals during the fattening phase prior to hibernation. Further, metabolic rates and body mass loss during hibernation did not differ between dietary groups, despite marked differences in fatty acid profiles observed in white adipose tissue prior and at mid-hibernation. Overall, maintenance of PPAR DNA-binding activity was observed during torpor, and across three n-6/n-3 ratios, suggesting alternate mechanisms for the prioritization of lipid catabolism during torpor. Additionally, while no change was seen in L-FABP, significantly altered levels of PGC-1α were observed within the white adipose tissue and likely contributes to enhanced lipid metabolism when the diet favors n-6 PUFAs, i.e., high n-6/n-3 ratio, in both the torpid and euthermic state. Altogether, the maintenance of lipid metabolism during torpor makes it likely that consistent activity or levels of the investigated proteins are in aid of this metabolic profile.

2005 ◽  
Vol 289 (4) ◽  
pp. E617-E626 ◽  
Author(s):  
Pipeng Li ◽  
Zhengxian Zhu ◽  
Yuyan Lu ◽  
James G. Granneman

Chronic activation of adipocyte β-adrenergic receptors induces remodeling of white adipose tissue (WAT) that includes a transient inflammatory response followed by mitochondrial biogenesis, induction of fatty acid oxidation genes, and elevation of tissue oxidative metabolism. Gene profiling experiments of WAT during remodeling induced by the β3-adrenergic receptor agonist CL-316,243 (CL) suggested that peroxisome proliferator-activated receptor-α (Ppara), which is upregulated by CL, might be an important transcriptional regulator of that process. Histological, physiological, and molecular analysis of CL-induced remodeling in wild-type mice and mice lacking Ppara demonstrated that Ppara was important for inducing adipocyte mitochondrial biogenesis and upregulating genes involved in fatty acid oxidation. Furthermore, Ppara-deficient mice exhibited sustained WAT inflammation during CL treatment, indicating that upregulation of Ppara limits proinflammatory signaling during chronic lipolytic activation. Together, these data support the hypothesis that WAT remodeling is an adaptive response to excessive fatty acid mobilization whereby Ppara and its downstream targets elevate fatty acid catabolism and suppress proinflammatory signaling.


Endocrinology ◽  
2001 ◽  
Vol 142 (3) ◽  
pp. 1269-1277 ◽  
Author(s):  
James M. Way ◽  
W. Wallace Harrington ◽  
Kathleen K. Brown ◽  
William K. Gottschalk ◽  
Scott S. Sundseth ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ (PPARγ) agonists, including the glitazone class of drugs, are insulin sensitizers that reduce glucose and lipid levels in patients with type 2 diabetes mellitus. To more fully understand the molecular mechanisms underlying their therapeutic actions, we have characterized the effects of the potent, tyrosine-based PPARγ ligand GW1929 on serum glucose and lipid parameters and gene expression in Zucker diabetic fatty rats. In time-course studies, GW1929 treatment decreased circulating FFA levels before reducing glucose and triglyceride levels. We used a comprehensive and unbiased messenger RNA profiling technique to identify genes regulated either directly or indirectly by PPARγ in epididymal white adipose tissue, interscapular brown adipose tissue, liver, and soleus skeletal muscle. PPARγ activation stimulated the expression of a large number of genes involved in lipogenesis and fatty acid metabolism in both white adipose tissue and brown adipose tissue. In muscle, PPARγ agonist treatment decreased the expression of pyruvate dehydrogenase kinase 4, which represses oxidative glucose metabolism, and also decreased the expression of genes involved in fatty acid transport and oxidation. These changes suggest a molecular basis for PPARγ-mediated increases in glucose utilization in muscle. In liver, PPARγ activation coordinately decreased the expression of genes involved in gluconeogenesis. We conclude from these studies that the antidiabetic actions of PPARγ agonists are probably the consequence of 1) their effects on FFA levels, and 2), their coordinate effects on gene expression in multiple insulin-sensitive tissues.


Metabolism ◽  
2007 ◽  
Vol 56 (8) ◽  
pp. 1029-1036 ◽  
Author(s):  
Anatoli Petridou ◽  
Sofia Tsalouhidou ◽  
George Tsalis ◽  
Thorsten Schulz ◽  
Horst Michna ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 6025
Author(s):  
Masaki Kobayashi ◽  
Yusuke Deguchi ◽  
Yuka Nozaki ◽  
Yoshikazu Higami

Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) regulates mitochondrial DNA replication and mitochondrial gene expression by interacting with several transcription factors. White adipose tissue (WAT) mainly comprises adipocytes that store triglycerides as an energy resource and secrete adipokines. The characteristics of WAT vary in response to systemic and chronic metabolic alterations, including obesity or caloric restriction. Despite a small amount of mitochondria in white adipocytes, accumulated evidence suggests that mitochondria are strongly related to adipocyte-specific functions, such as adipogenesis and lipogenesis, as well as oxidative metabolism for energy supply. Therefore, PGC-1α is expected to play an important role in WAT. In this review, we provide an overview of the involvement of mitochondria and PGC-1α with obesity- and caloric restriction-related physiological changes in adipocytes and WAT.


2021 ◽  
Author(s):  
Jerad Jaborek ◽  
Francis Fluharty ◽  
Kichoon Lee ◽  
Henry Zerby ◽  
Alejandro Relling

Abstract Background: This study investigates intramuscular (IM) adipocyte development and growth in the Longissimus muscle (LM) between Wagyu- and Angus-sired steers compared at a similar age and days on feed (DOF) endpoint or similar body weight (BW) endpoint by measuring IM adipocyte cell area and lipid metabolism gene expression. Methods: Angus-sired steers (AN, n=6) were compared with steers from two different Wagyu sires, selected for either growth or marbling, to be compared at a similar DOF (WA-GD, n=5 and WA-MD, n=5) in experiment 1 or BW (WA-GB, n=4 and WA-MB, n=5) in experiment 2, respectively. Results: In experiment 1, WA-MD steers had a greater percentage of IM fat in the LM compared with AN and WA-GD steers. In experiment 2, WA-MB steers had a greater percentage of IM fat in the LM compared with AN and WA-GB steers. The distribution of IM adipocyte area was unimodal at all biopsy collections, with IM adipocyte area becoming progressively larger as cattle age and BW increased (P≤0.01). Peroxisome proliferator activated receptor delta (PPARd) was upregulated earlier for WA-MD and WA-MB cattle compared with other steers at a similar age and BW (P≤0.02; treatment×biopsy interaction). An earlier upregulation of PPARd is believed to have then upregulated peroxisome proliferator activated receptor gamma (PPARg) at a lesser BW for WA-MB steers (P=0.09; treatment×biopsy interaction), while WA-MD steers had a greater (P≤0.04) overall mean PPARg expression compared with other steers. Glycerol-3-phosphate acyltransferase, lipin 1, and hormone sensitive lipase demonstrated expression patterns similar to PPARg and PPARd or CCAAT enhancer binding protein beta, which emphasizes their importance in marbling development and growth. Additionally, WA-MD and WA-MB steers often had a greater early expression of fatty acid transporters (fatty acid transport protein 1; P<0.02; treatment×biopsy interaction) and binding proteins (fatty acid binding protein 4) compared with other steers. With many lipolytic genes upregulated at harvest, acetyl-CoA carboxylase beta may be inhibiting fatty acid oxidation in the LM to allow greater IM fat accumulation.Conclusions: Cattle with a greater marbling propensity appear to upregulate adipogenesis at a lesser maturity through PPARd, PPARg, and possibly adipogenic regulating compounds in lysophosphatidic acid and diacylglycerol.


2006 ◽  
Vol 92 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Arya M. Sharma ◽  
Bart Staels

Abstract Context: Adipose tissue is a metabolically dynamic organ, serving as a buffer to control fatty acid flux and a regulator of endocrine function. In obese subjects, and those with type 2 diabetes or the metabolic syndrome, adipose tissue function is altered (i.e. adipocytes display morphological differences alongside aberrant endocrine and metabolic function and low-grade inflammation). Evidence Acquisition: Articles on the role of peroxisome proliferator-activated receptor γ (PPARγ) in adipose tissue of healthy individuals and those with obesity, metabolic syndrome, or type 2 diabetes were sourced using MEDLINE (1990–2006). Evidence Synthesis: Articles were assessed to provide a comprehensive overview of how PPARγ-activating ligands improve adipose tissue function, and how this links to improvements in insulin resistance and the progression to type 2 diabetes and atherosclerosis. Conclusions: PPARγ is highly expressed in adipose tissue, where its activation with thiazolidinediones alters fat topography and adipocyte phenotype and up-regulates genes involved in fatty acid metabolism and triglyceride storage. Furthermore, PPARγ activation is associated with potentially beneficial effects on the expression and secretion of a range of factors, including adiponectin, resistin, IL-6, TNFα, plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and angiotensinogen, as well as a reduction in plasma nonesterified fatty acid supply. The effects of PPARγ also extend to macrophages, where they suppress production of inflammatory mediators. As such, PPARγ activation appears to have a beneficial effect on the relationship between the macrophage and adipocyte that is distorted in obesity. Thus, PPARγ-activating ligands improve adipose tissue function and may have a role in preventing progression of insulin resistance to diabetes and endothelial dysfunction to atherosclerosis.


Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Shoba Shetty ◽  
Maria A. Ramos-Roman ◽  
You-Ree Cho ◽  
Jonathan Brown ◽  
Jorge Plutzky ◽  
...  

Adiponectin overexpression in mice increases insulin sensitivity independent of adiposity. Here, we combined stable isotope infusion and in vivo measurements of lipid flux with transcriptomic analysis to characterize fatty acid metabolism in transgenic mice that overexpress adiponectin via the aP2-promoter (ADNTg). Compared with controls, fasted ADNTg mice demonstrated a 31% reduction in plasma free fatty acid concentrations (P = 0.008), a doubling of ketones (P = 0.028), and a 68% increase in free fatty acid turnover in plasma (15.1 ± 1.5 vs. 25.3 ± 6.8 mg/kg · min, P = 0.011). ADNTg mice had 2-fold more brown adipose tissue mass, and triglyceride synthesis and turnover were 5-fold greater in this organ (P = 0.046). Epididymal white adipose tissue was slightly reduced, possibly due to the approximately 1.5-fold increase in the expression of genes involved in oxidation (peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor-γ coactivator 1α, and uncoupling protein 3). In ADNTg liver, lipogenic gene expression was reduced, but there was an unexpected increase in the expression of retinoid pathway genes (hepatic retinol binding protein 1 and retinoic acid receptor beta and adipose Cyp26A1) and liver retinyl ester content (64% higher, P &lt; 0.02). Combined, these data support a physiological link between adiponectin signaling and increased efficiency of triglyceride synthesis and hydrolysis, a process that can be controlled by retinoids. Interactions between adiponectin and retinoids may underlie adiponectin's effects on intermediary metabolism.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
M. Ebrahimi ◽  
M. A. Rajion ◽  
Y. M. Goh ◽  
A. Q. Sazili ◽  
J. T. Schonewille

This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing highα-linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR)α, PPAR-γ, and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P<0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR-γ(P<0.05) but downregulated the expression of SCD (P<0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).


2009 ◽  
Vol 296 (5) ◽  
pp. E1120-E1132 ◽  
Author(s):  
Christelle Veyrat-Durebex ◽  
Xavier Montet ◽  
Manlio Vinciguerra ◽  
Asllan Gjinovci ◽  
Paolo Meda ◽  
...  

The inbred Lou/C rat, originating from the Wistar strain, has been described as a model of resistance to diet-induced obesity, but little is known about its metabolism. Since this knowledge could provide some clues about the etiology of obesity/insulin resistance, this study aimed at characterizing glucose and lipid metabolism in Lou/C vs. Wistar rats. This was achieved by performing glucose and insulin tolerance tests, euglycemic hyperinsulinemic clamps, and characterization of intracellular insulin signaling in skeletal muscle. Substrate-induced insulin secretion was evaluated using perfused pancreas and isolated islets. Finally, body fat composition and the expression of various factors involved in lipid metabolism were determined. Body weight and caloric intake were lower in Lou/C than in Wistar rats, whereas food efficiency was similar. Improved glucose tolerance of Lou/C rats was not related to increased insulin output but was related to improved insulin sensitivity/responsiveness in the liver and in skeletal muscles. In the latter tissue, this was accompanied by improved insulin signaling, as suggested by higher activation of the insulin receptor and of the Akt/protein kinase B pathway. Fat deposition was markedly lower in Lou/C than in Wistar rats, especially in visceral adipose tissue. In the inguinal adipose depot, expression of uncoupling protein-1 was detected in Lou/C but not in Wistar rats, in keeping with a higher expression of peroxisome proliferator-activated receptor-γ coactivator-1 in these animals. The Lou/C rat is a valuable model of spontaneous food restriction with associated improved insulin sensitivity. Independently from its reduced caloric intake, it also exhibits a preferential channeling of nutrients toward utilization rather than storage.


2006 ◽  
Vol 27 (3) ◽  
pp. 282-294 ◽  
Author(s):  
P. Christopher LaRosa ◽  
Jess Miner ◽  
Yuannan Xia ◽  
You Zhou ◽  
Steve Kachman ◽  
...  

A combined histological and microarray analysis of the white adipose tissue (WAT) of mice fed trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) was performed to better define functional responses. Mice fed t10c12 CLA for 14 days lost 85% of WAT mass, 95% of adipocyte lipid droplet volume, and 15 or 47% of the number of adipocytes and total cells, respectively. Microarray profiling of replicated pools ( n = 2 per day × diet) of control and treated mice ( n = 140) at seven time points after 1–17 days of t10c12 CLA feeding found between 2,682 and 4,216 transcript levels changed by twofold or more. Transcript levels for genes involved in glucose and fatty acid import or biosynthesis were significantly reduced. Highly expressed transcripts for lipases were significantly reduced but still abundant. Increased levels of mRNAs for two key thermogenesis proteins, uncoupling protein 1 and carnitine palmitoyltransferase 1, may have increased energy expenditures. Significant reductions of mRNAs for major adipocyte regulatory factors, including peroxisome proliferator activated receptor-γ, sterol regulatory binding protein 1, CAAT/enhancer binding protein-α, and lipin 1 were correlated with the reduced transcript levels for key metabolic pathways in the WAT. A prolific inflammation response was indicated by the 2- to 100-fold induction of many cytokine transcripts, including those for IL-6, IL-1β, TNF ligands, and CXC family members, and an increased density of macrophages. The mRNA changes suggest that a combination of cell loss, increased energy expenditure, and residual transport of lipids out of the adipocytes may account for the cumulative mass loss observed.


Sign in / Sign up

Export Citation Format

Share Document