scholarly journals The Olfactory Chemosensation of Hematophagous Hemipteran Insects

2021 ◽  
Vol 12 ◽  
Author(s):  
Feng Liu ◽  
Zhou Chen ◽  
Zi Ye ◽  
Nannan Liu

As one of the most abundant insect orders on earth, most Hemipteran insects are phytophagous, with the few hematophagous exceptions falling into two families: Cimicidae, such as bed bugs, and Reduviidae, such as kissing bugs. Many of these blood-feeding hemipteran insects are known to be realistic or potential disease vectors, presenting both physical and psychological risks for public health. Considerable researches into the interactions between hemipteran insects such as kissing bugs and bed bugs and their human hosts have revealed important information that deepens our understanding of their chemical ecology and olfactory physiology. Sensory mechanisms in the peripheral olfactory system of both insects have now been characterized, with a particular emphasis on their olfactory sensory neurons and odorant receptors. This review summarizes the findings of recent studies of both kissing bugs (including Rhodnius prolixus and Triatoma infestans) and bed bugs (Cimex lectularius), focusing on their chemical ecology and peripheral olfactory systems. Potential chemosensation-based applications for the management of these Hemipteran insect vectors are also discussed.

FACETS ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Benoit Talbot ◽  
Nusha Keyghobadi ◽  
Brock Fenton

Cimicid insects, bed bugs and their allies, include about 100 species of blood-feeding ectoparasites. Among them, a few have become widespread and abundant pests of humans. Cimicids vary in their degree of specialization to hosts. Whereas most species specialize on insectivorous birds or bats, the common bed bug can feed on a range of distantly related host species, such as bats, humans, and chickens. We suggest that association with humans and generalism in bed bugs led to fundamentally different living conditions that fostered rapid growth and expansion of their populations. We propose that the evolutionary and ecological success of common bed bugs reflected exploitation of large homeothermic hosts (humans) that sheltered in buildings. This was a departure from congeners whose hosts are much smaller and often heterothermic. We argue that interesting insights into the biology of pest species may be obtained using an integrated view of their ecology and evolution.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Claudiney Biral dos Santos ◽  
Marcelo Teixeira Tavares ◽  
Gustavo Rocha Leite ◽  
Adelson Luiz Ferreira ◽  
Leonardo de Souza Rocha ◽  
...  

We report for the first time the parasitism of eggs of two triatomine Chagas disease vectors,Triatoma infestansandT. vitticeps, by the microhymenopterous parasitoidAprostocetus asthenogmus. We also describe the first identification of this parasitoid in South America.A. asthenogmuswere captured near unparasitized triatomine colonies in the municipality of Vitória, state of Espírito Santo, Brazil, and placed into pots with recently laid triatomine eggs. After 24 days, we observed wasps emerging fromT. infestansandT. vitticepseggs. Several characteristics of this parasitoid species suggest that it could be a potential biological control agent of triatomine species.


2020 ◽  
Vol 49 (5) ◽  
pp. 538-541
Author(s):  
Keiji Matsumoto ◽  
Yoko Yasuno ◽  
Kohei Yasuda ◽  
Tsuyoshi Hayashi ◽  
Shin G. Goto ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael L. Fisher ◽  
Jay F. Levine ◽  
James S. Guy ◽  
Hiroyuki Mochizuki ◽  
Matthew Breen ◽  
...  

Abstract Background The common bed bug, Cimex lectularius, is an obligatory blood-feeding ectoparasite that requires a blood meal to molt and produce eggs. Their frequent biting to obtain blood meals and intimate association with humans increase the potential for disease transmission. However, despite more than 100 years of inquiry into bed bugs as potential disease vectors, they still have not been conclusively linked to any pathogen or disease. This ecological niche is extraordinarily rare, given that nearly every other blood-feeding arthropod is associated with some type of human or zoonotic disease. Bed bugs rely on the bacteria Wolbachia as an obligate endosymbiont to biosynthesize B vitamins, since they acquire a nutritionally deficient diet, but it is unknown if Wolbachia confers additional benefits to its bed bug host. In some insects, Wolbachia induces resistance to viruses such as Dengue, Chikungunya, West Nile, Drosophila C and Zika, and primes the insect immune system in other blood-feeding insects. Wolbachia might have evolved a similar role in its mutualistic association with the bed bug. In this study, we evaluated the influence of Wolbachia on virus replication within C. lectularius. Methods We used feline calicivirus as a model pathogen. We fed 40 bed bugs from an established line of Wolbachia-cured and a line of Wolbachia-positive C. lectularius a virus-laden blood meal, and quantified the amount of virus over five time intervals post-feeding. The antibiotic rifampicin was used to cure bed bugs of Wolbachia. Results There was a significant effect of time post-feeding, as the amount of virus declined by ~90% over 10 days in both groups, but no significant difference in virus titer was observed between the Wolbachia-positive and Wolbachia-cured groups. Conclusions These findings suggest that other mechanisms are involved in virus suppression within bed bugs, independent of the influence of Wolbachia, and our conclusions underscore the need for future research.


2007 ◽  
Vol 268 (2-3) ◽  
pp. 265-276 ◽  
Author(s):  
Sébastien Charneau ◽  
Magno Junqueira ◽  
Camila M. Costa ◽  
Daniele L. Pires ◽  
Ellen S. Fernandes ◽  
...  

Author(s):  
Awat Samiei ◽  
Mousa Tavassoli ◽  
Karim Mardani

Background: Bedbugs are blood feeding ectoparasites of humans and several domesticated animals. There are scar­city of information about the bed bugs population throughout Iran and only very limited and local studies are availa­ble. The aim of this study is to assess the phylogenetic relationships and nucleotide diversity using partial sequences of cytochrome oxidase I gene (COI) among the populations of tropical bed bugs inhabiting Iran. Methods: The bedbugs were collected from cities located in different geographical regions of Iran. After DNA ex­traction PCR was performed for COI gene using specific primers. Then DNA sequencing was performed on PCR products for the all 15 examined samples. Results: DNA sequencing analysis showed that the all C. hemipterus samples were similar, despite the minor nu­cleotide variations (within the range of 576 to 697bp) on average between 5 and 10 Single nucleotide polymorphisms (SNPs). Subsequently, the results were compared with the database in gene bank which revealed close similarity and sequence homology with other C. hemipterus from other parts of the world. Conclusion: In conclusion, this study has demonstrated the ability of the COI gene to differentiate between the C. hemipterus populations from a few different locations in Iran. The current research is the first report of phylogenetic and genetic species diversity analysis conducted on C. hemipterus in Iran. These results provided basic information for further studies of molecular epidemiology, public health and pest control operators in Iran.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alejandra Alvedro ◽  
María Sol Gaspe ◽  
Hannah Milbourn ◽  
Natalia Paula Macchiaverna ◽  
Mariano Alberto Laiño ◽  
...  

Abstract Background Peri-urban and urban settings have recently gained more prominence in studies on vector-borne transmission of Trypanosoma cruzi due to sustained rural-to-urban migrations and reports of urban infestations with triatomines. Prompted by the finding of Triatoma infestans across the rural-to-urban gradient in Avia Terai, an endemic municipality of the Argentine Chaco, we assessed selected components of domestic transmission risk in order to determine its variation across the gradient. Methods A baseline vector survey was conducted between October 2015 and March 2016, following which we used multistage random sampling to select a representative sample of T. infestans at the municipal level. We assessed T. cruzi infection and blood-feeding sources of 561 insects collected from 109 houses using kinetoplast DNA-PCR assays and direct enzyme-linked immunosorbent assays, respectively. We stratified triatomines according to their collection site (domestic or peridomestic), and we further categorized peridomestic sites in ecotopes of low- or high-risk for T. cruzi infection. Results The overall adjusted prevalence of T. cruzi-infected T. infestans was 1.8% (95% confidence interval [CI] 1.3–2.3) and did not differ between peri-urban (1.7%) and rural (2.2%) environments. No infection was detected in bugs captured in the urban setting; rather, infected triatomines were mainly collected in rural and peri-urban domiciles, occurring in 8% of T. infestans-infested houses. The main blood-feeding sources of domestic and peridomestic triatomines across the gradient were humans and chickens, respectively. The proportion of triatomines that had fed on humans did not differ between peri-urban (62.5%) and rural (65.7%) domiciles, peaking in the few domestic triatomines collected in urban houses and decreasing significantly with an increasing proportion of chicken- and dog- or cat-fed bugs. The relative odds ratio (OR) of having a T. cruzi infection was nearly threefold higher in bugs having a blood meal on humans (OR 3.15), dogs (OR 2.80) or cats (OR: 4.02) in a Firth-penalized multiple logistic model. Conclusions Trypanosoma cruzi transmission was likely occurring both in peri-urban and rural houses of Avia Terai. Widespread infestation in a third of urban blocks combined with high levels of human–triatomine contact in the few infested domiciles implies a threat to urban inhabitants. Vector control strategies and surveillance originally conceived for rural areas should be tailored to peri-urban and urban settings in order to achieve sustainable interruption of domestic transmission in the Chaco region.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7808 ◽  
Author(s):  
Jesús Olivares ◽  
Oliver Schmachtenberg

About half of all extant vertebrates are teleost fishes. Although our knowledge about anatomy and function of their olfactory systems still lags behind that of mammals, recent advances in cellular and molecular biology have provided us with a wealth of novel information about the sense of smell in this important animal group. Its paired olfactory organs contain up to five types of olfactory receptor neurons expressing OR, TAAR, VR1- and VR2-class odorant receptors associated with individual transduction machineries. The different types of receptor neurons are preferentially tuned towards particular classes of odorants, that are associated with specific behaviors, such as feeding, mating or migration. We discuss the connections of the receptor neurons in the olfactory bulb, the differences in bulbar circuitry compared to mammals, and the characteristics of second order projections to telencephalic olfactory areas, considering the everted ontogeny of the teleost telencephalon. The review concludes with a brief overview of current theories about odor coding and the prominent neural oscillations observed in the teleost olfactory system.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 215 ◽  
Author(s):  
Anna C. Fagre ◽  
Rebekah C. Kading

Bats are known to harbor and transmit many emerging and re-emerging viruses, many of which are extremely pathogenic in humans but do not cause overt pathology in their bat reservoir hosts: henipaviruses (Nipah and Hendra), filoviruses (Ebola and Marburg), and coronaviruses (SARS-CoV and MERS-CoV). Direct transmission cycles are often implicated in these outbreaks, with virus shed in bat feces, urine, and saliva. An additional mode of virus transmission between bats and humans requiring further exploration is the spread of disease via arthropod vectors. Despite the shared ecological niches that bats fill with many hematophagous arthropods (e.g. mosquitoes, ticks, biting midges, etc.) known to play a role in the transmission of medically important arboviruses, knowledge surrounding the potential for bats to act as reservoirs for arboviruses is limited. To this end, a comprehensive literature review was undertaken examining the current understanding and potential for bats to act as reservoirs for viruses transmitted by blood-feeding arthropods. Serosurveillance and viral isolation from either free-ranging or captive bats are described in relation to four arboviral groups (Bunyavirales, Flaviviridae, Reoviridae, Togaviridae). Further, ecological associations between bats and hematophagous viral vectors are characterized (e.g. bat bloodmeals in mosquitoes, ingestion of mosquitoes by bats, etc). Lastly, knowledge gaps related to hematophagous ectoparasites (bat bugs and bed bugs (Cimicidae) and bat flies (Nycteribiidae and Streblidae)), in addition to future directions for characterization of bat-vector-virus relationships are described.


Sign in / Sign up

Export Citation Format

Share Document