scholarly journals Drosophila melanogaster: A Powerful Tiny Animal Model for the Study of Metabolic Hepatic Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Karen C. M. Moraes ◽  
Jacques Montagne

Animal experimentation is limited by unethical procedures, time-consuming protocols, and high cost. Thus, the development of innovative approaches for disease treatment based on alternative models in a fast, safe, and economic manner is an important, yet challenging goal. In this paradigm, the fruit-fly Drosophila melanogaster has become a powerful model for biomedical research, considering its short life cycle and low-cost maintenance. In addition, biological processes are conserved and homologs of ∼75% of human disease-related genes are found in the fruit-fly. Therefore, this model has been used in innovative approaches to evaluate and validate the functional activities of candidate molecules identified via in vitro large-scale analyses, as putative agents to treat or reverse pathological conditions. In this context, Drosophila offers a powerful alternative to investigate the molecular aspects of liver diseases, since no effective therapies are available for those pathologies. Non-alcoholic fatty liver disease is the most common form of chronic hepatic dysfunctions, which may progress to the development of chronic hepatitis and ultimately to cirrhosis, thereby increasing the risk for hepatocellular carcinoma (HCC). This deleterious situation reinforces the use of the Drosophila model to accelerate functional research aimed at deciphering the mechanisms that sustain the disease. In this short review, we illustrate the relevance of using the fruit-fly to address aspects of liver pathologies to contribute to the biomedical area.

1999 ◽  
Vol 19 (2) ◽  
pp. 1159-1170 ◽  
Author(s):  
Madeline A. Crosby ◽  
Chaya Miller ◽  
, Tamar Alon ◽  
Kellie L. Watson ◽  
C. Peter Verrijzer ◽  
...  

ABSTRACT The genes of the trithorax group (trxG) inDrosophila melanogaster are required to maintain the pattern of homeotic gene expression that is established early in embryogenesis by the transient expression of the segmentation genes. The precise role of each of the diverse trxG members and the functional relationships among them are not well understood. Here, we report on the isolation of the trxG gene moira(mor) and its molecular characterization. morencodes a fruit fly homolog of the human and yeast chromatin-remodeling factors BAF170, BAF155, and SWI3. mor is widely expressed throughout development, and its 170-kDa protein product is present in many embryonic tissues. In vitro, MOR can bind to itself and it interacts with Brahma (BRM), an SWI2-SNF2 homolog, with which it is associated in embryonic nuclear extracts. The leucine zipper motif of MOR is likely to participate in self-oligomerization; the equally conserved SANT domain, for which no function is known, may be required for optimal binding to BRM. MOR thus joins BRM and Snf5-related 1 (SNR1), two known Drosophila SWI-SNF subunits that act as positive regulators of the homeotic genes. These observations provide a molecular explanation for the phenotypic and genetic relationships among several of the trxG genes by suggesting that they encode evolutionarily conserved components of a chromatin-remodeling complex.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Shashank Chetty ◽  
S. Praneetha ◽  
Sandeep Basu ◽  
Chetana Sachidanandan ◽  
A. Vadivel Murugan

Abstract Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).


2020 ◽  
Vol 21 (8) ◽  
pp. 2788
Author(s):  
Tsuyoshi Shimo

The Hedgehog signaling pathway was first discovered in 1980 during a large-scale genetic screening seeking to find mutations that affect larval body segment development in the fruit fly, Drosophila melanogaster [...]


2018 ◽  
Author(s):  
Edwin A. Solares ◽  
Mahul Chakraborty ◽  
Danny E. Miller ◽  
Shannon Kalsow ◽  
Kate Hall ◽  
...  

ABSTRACTAccurate and comprehensive characterization of genetic variation is essential for deciphering the genetic basis of diseases and other phenotypes. A vast amount of genetic variation stems from large-scale sequence changes arising from the duplication, deletion, inversion, and translocation of sequences. In the past 10 years, high-throughput short reads have greatly expanded our ability to assay sequence variation due to single nucleotide polymorphisms. However, a recent de novo assembly of a second Drosophila melanogaster reference genome has revealed that short read genotyping methods miss hundreds of structural variants, including those affecting phenotypes. While genomes assembled using high-coverage long reads can achieve high levels of contiguity and completeness, concerns about cost, errors, and low yield have limited widespread adoption of such sequencing approaches. Here we resequenced the reference strain of D. melanogaster (ISO1) on a single Oxford Nanopore MinION flow cell run for 24 hours. Using only reads longer than 1 kb or with at least 30x coverage, we assembled a highly contiguous de novo genome. The addition of inexpensive paired reads and subsequent scaffolding using an optical map technology achieved an assembly with completeness and contiguity comparable to the D. melanogaster reference assembly. Comparison of our assembly to the reference assembly of ISO1 uncovered a number of structural variants (SVs), including novel LTR transposable element insertions and duplications affecting genes with developmental, behavioral, and metabolic functions. Collectively, these SVs provide a snapshot of the dynamics of genome evolution. Furthermore, our assembly and comparison to the D. melanogaster reference genome demonstrates that high-quality de novo assembly of reference genomes and comprehensive variant discovery using such assemblies are now possible by a single lab for under $1,000 (USD).


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4553 ◽  
Author(s):  
Yun Xia ◽  
Qi Zhang ◽  
Xue E. Wu ◽  
Tim V. Kirk ◽  
Xiao Dong Chen

Presented is a flexible capacitive strain sensor, based on the low cost materials silicone (PDMS) and carbon black (CB), that was fabricated by casting and curing of successive silicone layers—a central PDMS dielectric layer bounded by PDMS/CB blend electrodes and packaged by exterior PDMS films. It was effectively characterized for large flexion-angle motion wearable applications, with strain sensing properties assessed over large strains (50%) and variations in temperature and humidity. Additionally, suitability for monitoring large tissue deformation was established by integration with an in vitro digestive model. The capacitive gauge factor was approximately constant at 0.86 over these conditions for the linear strain range (3 to 47%). Durability was established from consistent relative capacitance changes over 10,000 strain cycles, with varying strain frequency and elongation up to 50%. Wearability and high flexion angle human motion detection were demonstrated by integration with an elbow band, with clear detection of motion ranges up 90°. The device’s simple structure and fabrication method, low-cost materials and robust performance, offer promise for expanding the availability of wearable sensor systems.


2019 ◽  
Vol 11 (12) ◽  
pp. 425-443 ◽  
Author(s):  
Alireza Zabihihesari ◽  
Arthur J Hilliker ◽  
Pouya Rezai

Abstract The fruit fly or Drosophila melanogaster has been used as a promising model organism in genetics, developmental and behavioral studies as well as in the fields of neuroscience, pharmacology, and toxicology. Not only all the developmental stages of Drosophila, including embryonic, larval, and adulthood stages, have been used in experimental in vivo biology, but also the organs, tissues, and cells extracted from this model have found applications in in vitro assays. However, the manual manipulation, cellular investigation and behavioral phenotyping techniques utilized in conventional Drosophila-based in vivo and in vitro assays are mostly time-consuming, labor-intensive, and low in throughput. Moreover, stimulation of the organism with external biological, chemical, or physical signals requires precision in signal delivery, while quantification of neural and behavioral phenotypes necessitates optical and physical accessibility to Drosophila. Recently, microfluidic and lab-on-a-chip devices have emerged as powerful tools to overcome these challenges. This review paper demonstrates the role of microfluidic technology in Drosophila studies with a focus on both in vivo and in vitro investigations. The reviewed microfluidic devices are categorized based on their applications to various stages of Drosophila development. We have emphasized technologies that were utilized for tissue- and behavior-based investigations. Furthermore, the challenges and future directions in Drosophila-on-a-chip research, and its integration with other advanced technologies, will be discussed.


2021 ◽  
Vol 21 (12) ◽  
pp. 6126-6134
Author(s):  
Lili Chi ◽  
Yuetong Zhang ◽  
Yusheng Hua ◽  
Qiqi Xu ◽  
Mingzhu Lv ◽  
...  

Nanomaterials with intrinsic enzyme-mimicking characteristics, refered to as nanozymes, have become a hot research topic owing to their unique advantages of comparative low cost, high stability and large-scale preparation. Among them, Single-atom nanozymes (SAzymes), as novel nanozymes with abundant atomically dispersed active sites, have caused specific attention in the development of nanozymes for their remarkable catalytic activities, maximum atomic utilization and excellent selectivity, the homogeneous catalytic sites and clear catalytic mechanisms. Herein, a novel single-atom nanozyme based on Fe(III)-doped polydiaminopyridine nanofusiforms (Fe-PDAP SAzyme) was successfully proposed via facile oxidation polymerization strategy. With well-defined coordination structure and abundant Fe-Nx active sites similar to natural metalloproteases, the Fe-PDAP SAzyme exhibits superior peroxidase-like activity by efficiently decomposing H2O2 for hydroxyl radical (.OH) species formation. Based on their superior peroxidase-like activity, colorimetric biosensing of H2O2 and glucose in vitro was performed by using a typical 3,3,5,5-tetramethylbenzidine through a multienzyme biocatalytic cascade platform, exhibiting the superior specificity and sensitivity. This work not only provides a novel promising SAzyme-based biosensor but also paves an avenue for evaluating enzyme activity and broadens the application of other nanozyme-based biosensors in the fields of biomedical diagnosis.


1991 ◽  
Vol 19 (2) ◽  
pp. 226-233
Author(s):  
Björn Ekwall ◽  
Inger Bondesson ◽  
Sven Hellberg ◽  
Johan Högberg ◽  
Lennart Romert ◽  
...  

In recent years, conventional toxicity testing in animals has been reinforced by in vitro methods. As a result, toxicity testing in some sectors has become more effective and at the same time more ethical. This trend is probably only at its beginning, as many of the newly-developed methods have not yet won general acceptance as a basis for the large-scale replacement and reduction of animal experimentation. What limits the wider use of these methods is validation, i.e. the evaluation of their reliability and relevance. The present paper is a short review of the validation efforts made hitherto, including projects being planned and under discussion. Our own MEIC approach is compared with other strategies. Finally, our opinion on the effectiveness of one large consensus project relative to several different smaller validation programmes is expressed — we advocate the latter strategy, because it will save time and reduce costs.


2016 ◽  
Vol 37 (5) ◽  
pp. 2923
Author(s):  
Luciana Alves Fogaça ◽  
Enio Luiz Pedrotti ◽  
Antonio Carlos Alves

For conventional micropropagation methods, semisolidified medium (SM) is used; the use of this medium requires intense manipulation of the cultures and skilled labor. Systems that use liquid medium show equal or better efficiency of the multiplication process, besides reducing the cost for the elimination of agar. In this study, we evaluated the mass propagation of Agapanthus umbellatus var. minor two in vitro multiplication systems (SM system and temporary immersion system [SIT]). The plant material was grown in MS medium supplemented with 6-benzylaminopurine (6-BA; 0.0, 8.9, 17.8, and 35.6 ?M). The data obtained in this study demonstrate that the two systems used were efficient for the multiplication phase of this species. However, we recommend SIT in view of its reuse in the process of multiplication and rooting. Moreover, simple construction, low cost of the culture medium, and low cost of the bioreactors and the fact that agar is not required qualify this system as an efficient alternative for large-scale micropropagation of Agapanthus umbellatus var. minor. We recommend 17.8 ?M 6-BA for the SM system and 8.9 ?M 6-BA for SIT.


2015 ◽  
Vol 122 (5) ◽  
pp. 1060-1074 ◽  
Author(s):  
Oressia H. Zalucki ◽  
Hareesh Menon ◽  
Benjamin Kottler ◽  
Richard Faville ◽  
Rebecca Day ◽  
...  

Abstract Background: Recent evidence suggests that general anesthetics activate endogenous sleep pathways, yet this mechanism cannot explain the entirety of general anesthesia. General anesthetics could disrupt synaptic release processes, as previous work in Caenorhabditis elegans and in vitro cell preparations suggested a role for the soluble NSF attachment protein receptor protein, syntaxin1A, in mediating resistance to several general anesthetics. The authors questioned whether the syntaxin1A-mediated effects found in these reductionist systems reflected a common anesthetic mechanism distinct from sleep-related processes. Methods: Using the fruit fly model, Drosophila melanogaster, the authors investigated the relevance of syntaxin1A manipulations to general anesthesia. The authors used different behavioral and electrophysiological endpoints to test the effect of syntaxin1A mutations on sensitivity to isoflurane. Results: The authors found two syntaxin1A mutations that confer opposite general anesthesia phenotypes: syxH3-C, a 14-amino acid deletion mutant, is resistant to isoflurane (n = 40 flies), and syxKARRAA, a strain with two amino acid substitutions, is hypersensitive to the drug (n = 40 flies). Crucially, these opposing effects are maintained across different behavioral endpoints and life stages. The authors determined the isoflurane sensitivity of syxH3-C at the larval neuromuscular junction to assess effects on synaptic release. The authors find that although isoflurane slightly attenuates synaptic release in wild-type animals (n = 8), syxH3-C preserves synaptic release in the presence of isoflurane (n = 8). Conclusion: The study results are evidence that volatile general anesthetics target synaptic release mechanisms; in addition to first activating sleep pathways, a major consequence of these drugs may be to decrease the efficacy of neurotransmission.


Sign in / Sign up

Export Citation Format

Share Document