scholarly journals Metabolite Profiles of Sugarcane Culm Reveal the Relationship Among Metabolism and Axillary Bud Outgrowth in Genetically Related Sugarcane Commercial Cultivars

2018 ◽  
Vol 9 ◽  
Author(s):  
Danilo A. Ferreira ◽  
Marina C. M. Martins ◽  
Adriana Cheavegatti-Gianotto ◽  
Monalisa S. Carneiro ◽  
Rodrigo R. Amadeu ◽  
...  
Author(s):  
Luís Guilherme F. de Abreu ◽  
Nicholas V. Silva ◽  
Allan Jhonathan R. Ferrari ◽  
Lucas M. de Carvalho ◽  
Mateus B. Fiamenghi ◽  
...  

2006 ◽  
Vol 32 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Jefferson Fernandes do Nascimento ◽  
Laércio Zambolim ◽  
Francisco Xavier Ribeiro do Vale ◽  
Paulo Geraldo Berger ◽  
Paulo Roberto Cecon

Four cultivars and 21 lines of cotton were evaluated for resistance to ramulose (Colletotrichum gossypii f. sp. cephalosporioides) in a field where the disease is endemic. The seeds of each genotype were planted in 5 x 5 m plots with three replications. The lines CNPA 94-101 and 'CNPA Precoce 2'were used as standard susceptible and resistant references, respectively. The disease incidence (DI) was calculated from the proportion of diseased plants in the plot. The disease index (DIn) was calculated from the disease severity using a 1 to 9 scale, and was evaluated at weekly intervals starting 107 days after emergence. The data collected was used to calculate the area under disease progress curve (AUDPC). In general, the DIn increased linearly with time and varied from 20.0 to 57.1 and AUDPC from 567 to 1627 among the genotypes which could be clustered in to two distinct groups. The susceptible group contained two cultivars and nine lines and the resistant group contained one cultivar and 12 lines. The relationship between disease index and evaluation times was linear for the 25 genotypes tested. The line CNPA 94-101, used as susceptible standard, was the most susceptible with an average DI = 83.4, DIn = 57.1 and AUDPC = 1627.7. The line CNPA 96-08 with DI = 37.8, DIn = 20.0 and AUDPC = 567.7 was the most resistant one. Among the commercial cultivars 'IAC 22' was the most susceptible and 'CNPA Precoce 2', used as resistant standard was the most resistant. The variability in virulence of the pathogen was studied by spray inoculating nine genotypes with conidial suspensions (10(5)/mL) of either of the 10 isolates. The disease severity was evaluated 30 days later using a scale of 1 to 5. The virulence of the isolate was expressed by DIn. All the isolates were highly virulent but their virulence avaried for several genotypes and could be clustered in two distinct groups of less and more virulent isolates. The isolate MTRM 14 from Mato Grosso was the least virulent while Minas Gerais was the most virulent, with DIn of 6.36 and 46.47, respectively. In this experiment the line HR 102 and the cultivar 'Antares' were the most resistant ones with DIns of 18.32 and 19.14, respectively.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Min Zhang ◽  
Luyang Jing ◽  
Qun Wu ◽  
Kaijie Zhu ◽  
Fuzhi Ke ◽  
...  

Abstract Background Chimeras synthesized artificially by grafting are crucial to the breeding of perennial woody plants. ‘Hongrou Huyou’ (Citrus changshan-huyou + Citrus unshiu) is a new graft chimera originating from the junction where a Citrus changshan-huyou (“C”) scion was top-grafted onto a stock Satsuma mandarin ‘Owari’ (C. unshiu, “O”). The chimera was named OCC because the cell layer constitutions were O for Layer 1(L1) and C for L2 and L3. In this study, profiles of primary metabolites, volatiles and carotenoids derived from different tissues in OCC and the two donors were investigated, with the aim of determining the relationship between the layer donors and metabolites. Results The comparison of the metabolite profiles showed that the amount and composition of metabolites were different between the peels and the juice sacs, as well as between OCC and each of the two donors. The absence or presence of specific metabolites (such as the carotenoids violaxanthin and β-cryptoxanthin, the volatile hydrocarbon germacrene D, and the primary metabolites citric acid and sorbose) in each tissue was identified in the three phenotypes. According to principal component analysis (PCA), overall, the metabolites in the peel of the chimera were derived from donor C, whereas those in the juice sac of the chimera came from donor O. Conclusion The profiles of primary metabolites, volatiles and carotenoids derived from the peels and juice sacs of OCC and the two donors were systematically compared. The content and composition of metabolites were different between the tissues and between OCC and the each of the two donors. A clear donor dominant pattern of metabolite inheritance was observed in the different tissues of OCC and was basically consistent with the layer origin; the peel of the chimera was derived from C, and the juice sacs of the chimera came from O. These profiles provide potential chemical markers for genotype differentiation, citrus breeding assessment, and donor selection during artificial chimera synthesis.


Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 316
Author(s):  
Wei Perng ◽  
Mohammad L. Rahman ◽  
Izzuddin M. Aris ◽  
Gregory Michelotti ◽  
Joanne E. Sordillo ◽  
...  

Early growth is associated with future metabolic risk; however, little is known of the underlying biological pathways. In this prospective study of 249 boys and 227 girls, we sought to identify sex-specific metabolite profiles that mark the relationship between age and magnitude of the infancy body mass index (BMI) peak, and the childhood BMI rebound with a metabolic syndrome z-score (MetS z-score) during early adolescence (median age 12.8 years). Thirteen consensus metabolite networks were generated between male and female adolescents using weighted correlation network analysis. In girls, none of the networks were related to BMI milestones after false discovery rate (FDR) correction at 5%. In boys, age and/or magnitude of BMI at rebound were associated with three metabolite eigenvector (ME) networks comprising androgen hormones (ME7), lysophospholipids (ME8), and diacylglycerols (ME11) after FDR correction. These networks were also associated with MetS z-score in boys after accounting for age and race/ethnicity: ME7 (1.43 [95% CI: 0.52, 2.34] units higher MetS z-score per 1 unit of ME7), ME8 (−1.01 [95% CI: −1.96, −0.07]), and ME11 (2.88 [95% CI: 2.06, 3.70]). These findings suggest that alterations in sex steroid hormone and lipid metabolism are involved in the relationship of early growth with future metabolic risk in males.


2016 ◽  
Vol 211 (4) ◽  
pp. 1266-1278 ◽  
Author(s):  
Xiao‐Juan Chen ◽  
Xiao‐Jian Xia ◽  
Xie Guo ◽  
Yan‐Hong Zhou ◽  
Kai Shi ◽  
...  

2017 ◽  
Vol 58 (4) ◽  
pp. 679-690 ◽  
Author(s):  
Miwa Ohashi ◽  
Keiki Ishiyama ◽  
Soichi Kojima ◽  
Mikiko Kojima ◽  
Hitoshi Sakakibara ◽  
...  

2015 ◽  
pp. 179-185
Author(s):  
R. Dierck ◽  
E. De Keyser ◽  
J. De Riek ◽  
E. Dhooghe ◽  
J. Van Huylenbroeck ◽  
...  

2020 ◽  
Author(s):  
Rongna Wang ◽  
Junjie Qian ◽  
Zhongming Fang ◽  
Jihua Tang

Abstract Background: N is an important macronutrient required for plant development and significantly influences axillary bud outgrowth, which affects tillering and grain yields of rice. However, how different N concentrations affect axillary bud growth at the molecular and transcriptional levels remains unclear. Results: In this study, morphological changes in the axillary bud growth of rice seedlings under different N concentrations ranging from low to high levels were systematically observed. To investigate the expression of N-induced genes involved in axillary bud growth, we used RNA-seq technology to generate mRNA transcriptomic data from two tissue types, basal parts and axillary buds, of plants grown under six different N concentrations. In total, 10,221 and 12,180 DEGs induced by LN or HN supplies were identified in the basal parts and axillary buds, respectively, via comparisons to expression levels under NN level. Analysis of the coexpression modules from the DEGs of the basal parts and axillary buds revealed an abundance of related biological processes underlying the axillary bud growth of plants under N treatments. Among these processes, the activity of cell division and expansion was positively correlated with the growth rate of axillary buds of plants grown under different N supplies. Additionally, TFs and phytohormones were shown to play crucial roles in determining the axillary bud growth of plants grown under different N concentrations. Further validation of OsGS1;2 and OsGS2 , the rice mutants of which presented altered tiller numbers, validated our transcriptomic data. Conclusion: These results indicate that different N concentrations affect the axillary bud growth rate, and our study revealed comprehensive expression profiles of genes that respond to different N concentrations, providing an important resource for future studies attempting to determine how axillary bud growth is controlled by different N supplies.


Sign in / Sign up

Export Citation Format

Share Document