scholarly journals Low Salinity Improves Photosynthetic Performance in Panicum antidotale Under Drought Stress

2020 ◽  
Vol 11 ◽  
Author(s):  
Tabassum Hussain ◽  
Hans-Werner Koyro ◽  
Wensheng Zhang ◽  
Xiaotong Liu ◽  
Bilquees Gul ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 332
Author(s):  
Min Li ◽  
Haoyun Wang ◽  
Xizhou Zhao ◽  
Zhongke Lu ◽  
Xueguang Sun ◽  
...  

Masson pine is an important afforestation species in southern China, where seasonal drought is common. The present study focused on the effects of Suillus placidus, an ectomycorrhizal fungus, inoculation on the growth and physiological and biochemical performance of masson pine seedlings under four different watering treatments (well-watered, mild drought, moderate drought, and severe drought) to evaluate the symbiotic relationship between S. placidus and masson pine seedlings. Ectomycorrhizal-inoculated (ECM) and non-inoculated (NM) seedlings were grown in pots and maintained for 60 days using the weighing method. Results showed that seedlings’ growth, dry weight, RWC, chlorophyll content, PSII efficiency, and photosynthesis decreased as drought stress intensified in both ECM and NM plants. This suggests that drought stress significantly limits the growth and photosynthetic performance of masson pine seedlings. Nevertheless, increased An/gs and proline contents in both NM and ECM prevented oxidative damage caused by drought stress. In addition, increased peroxidase (POD) activity is an essential defense mechanism of ECM seedling under drought stress. Compared with NM, ECM seedlings showed faster growth, higher RWC, and photosynthetic performance, and lower lipid peroxidation in cell membranes under drought stress, as indicated by higher POD activity and lower proline and malondialdehyde (MDA). Our experiment found that S. placidus inoculation can enhance the drought resistance of masson pine seedlings by increasing antioxidant enzyme activity, water use efficiency, and proline content, thereby enhancing growth under water-deficiency conditions. S. placidus can be used to cultivate high-quality seedlings and improve their survival in regions that experience seasonal droughts.


2016 ◽  
Vol 75 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Zamin Shaheed Siddiqui ◽  
Huda Shahid ◽  
Jung-Il Cho ◽  
Sung-Han Park ◽  
Tae-Hun Ryu ◽  
...  

AbstractThe physiological responses of two halophytic grass species, Halopyrum mucronatum (L.) Staph. and Cenchrus ciliaris (L.), under drought stress were evaluated. Biomass accumulation, relative water content, free proline, H2O2content, stomatal conductance, photosynthetic performance and quantum yield (Fv/Fmratio) were studied. Under drought conditions, these halophytic plants expressed differential responses to water deficit. Stomatal conductance and free proline content were higher in H. mucronatum than in C. ciliaris, while H2O2content in H. mucronatum was substantially lower than in C. ciliaris. Performance index showed considerable sensitivity to a water deficit condition, more so in C. ciliaris than in H. mucronatum. Results were discussed in relation to comparative physiological performance and antioxidant enzymes activity of both halophytic grasses under drought stress.


Author(s):  
Hu Sun ◽  
Qi Shi ◽  
Ning-Yu Liu ◽  
Shi-Bao Zhang ◽  
Wei Huang

Fluctuating light (FL) and drought stress usually occur concomitantly. However, whether drought stress affects photosynthetic performance under FL remains unknown. Here, we measured gas exchange, chlorophyll fluorescence, and P700 redox state under FL in drought-stressed tomato (Solanum lycopersicum) seedlings. Drought stress significantly affected stomatal opening and mesophyll conductance after transition from low to high light and thus delayed photosynthetic induction under FL. Therefore, drought stress exacerbated the loss of carbon gain under FL. Furthermore, restriction of CO2 fixation under drought stress aggravated the over-reduction of photosystem I (PSI) upon transition from low to high light. The resulting stronger FL-induced PSI photoinhibition significantly supressed linear electron flow and PSI photoprotection. These results indicated that drought stress not only affected gas exchange under FL but also accelerated FL-induced photoinhibition of PSI. Furthermore, drought stress enhanced relative cyclic electron flow in FL, which partially compensated for restricted CO2 fixation and thus favored PSI photoprotection under FL. Therefore, drought stress has large effects on photosynthetic dark and light reactions under FL.


2021 ◽  
Author(s):  
Hu Sun ◽  
Qi Shi ◽  
Ning-Yu Liu ◽  
Shi-Bao Zhang ◽  
Wei Huang

Fluctuating light (FL) and drought stress usually occur concomitantly. However, whether drought stress affects photosynthetic performance under FL remains unknown. Here, we measured gas exchange, chlorophyll fluorescence, and P700 redox state under FL in drought-stressed tomato (Solanum lycopersicum) seedlings. Drought stress significantly affected stomatal opening and mesophyll conductance after transition from low to high light and thus delayed photosynthetic induction under FL. Therefore, drought stress exacerbated the loss of carbon gain under FL. Furthermore, restriction of CO2 fixation under drought stress aggravated the over-reduction of photosystem I (PSI) upon transition from low to high light. The resulting stronger FL-induced PSI photoinhibition significantly supressed linear electron flow and PSI photoprotection. These results indicated that drought stress not only affected gas exchange under FL but also accelerated FL-induced photoinhibition of PSI. Furthermore, drought stress enhanced relative cyclic electron flow in FL, which partially compensated for restricted CO2 fixation and thus favored PSI photoprotection under FL. Therefore, drought stress has large effects on photosynthetic dark and light reactions under FL.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 232 ◽  
Author(s):  
Brito ◽  
Dinis ◽  
Moutinho-Pereira ◽  
Correia

Increasing consciousness regarding the nutritional value of olive oil has enhanced the demand for this product and, consequently, the expansion of olive tree cultivation. Although it is considered a highly resilient and tolerant crop to several abiotic stresses, olive growing areas are usually affected by adverse environmental factors, namely, water scarcity, heat and high irradiance, and are especially vulnerable to climate change. In this context, it is imperative to improve agronomic strategies to offset the loss of productivity and possible changes in fruit and oil quality. To develop more efficient and precise measures, it is important to look for new insights concerning response mechanisms to drought stress. In this review, we provided an overview of the global status of olive tree ecology and relevance, as well the influence of environmental abiotic stresses in olive cultivation. Finally, we explored and analysed the deleterious effects caused by drought (e.g., water status and photosynthetic performance impairment, oxidative stress and imbalance in plant nutrition), the most critical stressor to agricultural crops in the Mediterranean region, and the main olive tree responses to withstand this stressor.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 991
Author(s):  
Yayong Luo ◽  
Xueyong Zhao ◽  
Ginger R. H. Allington ◽  
Lilong Wang ◽  
Wenda Huang ◽  
...  

Global warming and changes in rainfall patterns may put many ecosystems at risk of drought. These stressors could be particularly destructive in arid systems where species are already water-limited. Understanding plant responses in terms of photosynthesis and growth to drought and rewatering is essential for predicting ecosystem-level responses to climate change. Different drought responses of C3 and C4 species could have important ecological implications affecting interspecific competition and distribution of plant communities in the future. For this study, C4 plant Pennisetum centrasiaticum and C3 plant Calamagrostis pseudophragmites were subjected to progressive drought and subsequent rewatering in order to better understand their differential responses to regional climate changes. We tracked responses in gas exchange, chlorophyll fluorescence, biomass as well as soil water status in order to investigate the ecophysiological responses of these two plant functional types. Similar patterns of photosynthetic regulations were observed during drought and rewatering for both psammophytes. They experienced stomatal restriction and nonstomatal restriction successively during drought. Photosynthetic performance recovered to the levels in well-watered plants after rewatering for 6–8 days. The C4 plant, P. centrasiaticum, exhibited the classic CO2-concentrating mechanism and more efficient thermal dissipation in the leaves, which confers more efficient CO2 assimilation and water use efficiency, alleviating drought stress, maintaining their photosynthetic advantage until water deficits became severe and quicker recovery after rewatering. In addition, P. centrasiaticum can allocate a greater proportion of root biomass in case of adequate water supply and a greater proportion of above-ground biomass in case of drought stress. This physiological adaptability and morphological adjustment underline the capacity of C4 plant P. centrasiaticum to withstand drought more efficiently and recover upon rewatering more quickly than C. pseudophragmites and dominate in the Horqin Sandy Land.


Sign in / Sign up

Export Citation Format

Share Document