scholarly journals Role of Arabidopsis Splicing factor SF1 in Temperature-Responsive Alternative Splicing of FLM pre-mRNA

2020 ◽  
Vol 11 ◽  
Author(s):  
Keh Chien Lee ◽  
Kyung Sook Chung ◽  
Hee Tae Lee ◽  
Jae-Hyeok Park ◽  
Jeong Hwan Lee ◽  
...  

Small changes in temperature affect plant ecological and physiological factors that impact agricultural production. Hence, understanding how temperature affects flowering is crucial for decreasing the effects of climate change on crop yields. Recent reports have shown that FLM-β, the major spliced isoform of FLOWERING LOCUS M (FLM)—a flowering time gene, contributes to temperature-responsive flowering in Arabidopsis thaliana. However, the molecular mechanism linking pre-mRNA processing and temperature-responsive flowering is not well understood. Genetic and molecular analyses identified the role of an Arabidopsis splicing factor SF1 homolog, AtSF1, in regulating temperature-responsive flowering. The loss-of-function AtSF1 mutant shows temperature insensitivity at different temperatures and very low levels of FLM-β transcript, but a significantly increased transcript level of the alternative splicing (AS) isoform, FLM-δ. An RNA immunoprecipitation (RIP) assay revealed that AtSF1 is responsible for ambient temperature-dependent AS of FLM pre-mRNA, resulting in the temperature-dependent production of functional FLM-β transcripts. Moreover, alterations in other splicing factors such as ABA HYPERSENSITIVE1/CBP80 (ABH1/CBP80) and STABILIZED1 (STA1) did not impact the FLM-β/FLM-δ ratio at different temperatures. Taken together, our data suggest that a temperature-dependent interaction between AtSF1 and FLM pre-mRNA controls flowering time in response to temperature fluctuations.

2020 ◽  
Vol 3 (12) ◽  
pp. e202000841
Author(s):  
Yoko Nakano ◽  
Susan Wiechert ◽  
Bernd Fritzsch ◽  
Botond Bánfi

In mechanosensory hair cells (HCs) of the ear, the transcriptional repressor REST is continuously inactivated by alternative splicing of its pre-mRNA. This mechanism of REST inactivation is crucial for hearing in humans and mice. Rest is one of many pre-mRNAs whose alternative splicing is regulated by the splicing factor SRRM4; Srrm4 loss-of-function mutation in mice (Srrm4bv/bv) causes deafness, balance defects, and degeneration of all HC types other than the outer HCs (OHCs). The specific splicing alterations that drive HC degeneration in Srrm4bv/bv mice are unknown, and the mechanism underlying SRRM4-independent survival of OHCs is undefined. Here, we show that transgenic expression of a dominant-negative REST fragment in Srrm4bv/bv mice is sufficient for long-term rescue of hearing, balancing, HCs, alternative splicing of Rest, and expression of REST target genes including the Srrm4 paralog Srrm3. We also show that in HCs, SRRM3 regulates many of the same exons as SRRM4; OHCs are unique among HCs in that they transiently down-regulate Rest transcription as they mature to express Srrm3 independently of SRRM4; and simultaneous SRRM4–SRRM3 deficiency causes complete HC loss by preventing inactivation of REST in all HCs. Thus, our data reveal that REST inactivation is the primary and essential role of SRRM4 in the ear, and that OHCs differ from other HCs in the SRRM4-independent expression of the functionally SRRM4-like splicing factor SRRM3.


Author(s):  
Danielle L Blackwell ◽  
Sherri D Fraser ◽  
Oana Caluseriu ◽  
Claudia Vivori ◽  
Paul MK Gordon ◽  
...  

AbstractMutations in RNA binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb and neurological symptoms. Heterogeneous Nuclear Ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. Here, we show a developmental role for hnrnpul1 in zebrafish fin and craniofacial development, and in adult onset scoliosis. Furthermore, we demonstrate a role of hnrnpul1 in alternative splicing regulation. In two siblings with congenital limb malformations, whole exome sequencing detected a frameshift variant in HNRNPUL1; the developmental role of this gene in humans has not been explored. Our data suggest an important developmental role of hnRNPUL1 in both zebrafish and humans. Although there are differences in phenotypes between species, our data suggests potential conservation of ancient regulatory circuits involving hnRNPUL1 in these phylogenetically distant species.Summary statementA zebrafish model of loss of Hnrnpul1 shows alternative splicing defects and results in limb growth, craniofacial tendon, and skeletal anomalies.


Author(s):  
Sandhya Yadav ◽  
Deepak Pant ◽  
Atul Samaiya ◽  
Neetu Kalra ◽  
Sanjay Gupta ◽  
...  

Aberrant alternative splicing is recognized to promote cancer pathogenesis, but the underlying mechanism is yet to be clear. Here, in this study, we report the frequent upregulation of SRSF10 (serine and arginine-rich splicing factor 10), a member of an expanded family of SR splicing factors, in the head and neck cancer (HNC) patients sample in comparison to paired normal tissues. We observed that SRSF10 plays a crucial role in HNC tumorigenesis by affecting the pro-death, pro-survical splice variants of BCL2L1 (BCL2 Like 1: BCLx: Apoptosis Regulator) and the two splice variants of PKM (Pyruvate kinase M), PKM1 normal isoform to PKM2 cancer-specific isoform. SRSF10 is a unique splicing factor with a similar domain organization to that of SR proteins but functions differently as it acts as a sequence-specific splicing activator in its phosphorylated form. Although a body of research studied the role of SRSF10 in the splicing process, the regulatory mechanisms underlying SRSF10 upregulation in the tumor are not very clear. In this study, we aim to dissect the pathway that regulates the SRSF10 upregulation in HNC. Our results uncover the role of transcription factor EGR1 (Early Growth Response1) in elevating the SRSF10 expression; EGR1 binds to the promoter of SRSF10 and promotes TET1 binding leading to the CpG demethylation (hydroxymethylation) in the adjacent position of the EGR1 binding motif, which thereby instigate SRSF10 expression in HNC. Interestingly we also observed that the EGR1 level is in the sink with the ERK1/2 pathway, and therefore, inhibition of the ERK1/2 pathway leads to the decreased EGR1 and SRSF10 expression level. Together, this is the first report to the best of our knowledge where we characterize the ERK 1/2-EGR1-SRSF10 axis regulating the cancer-specific splicing, which plays a critical role in HNC and could be a therapeutic target for better management of HNC patients.


2021 ◽  
Vol 22 (11) ◽  
pp. 6020
Author(s):  
Zheng-Hong Wang ◽  
Ning Yan ◽  
Xi Luo ◽  
Sai-Sai Guo ◽  
Shu-Qin Xue ◽  
...  

Temperature influences the physiological processes and ecology of both hosts and endophytes; however, it remains unclear how long noncoding RNAs (lncRNAs) modulate the consequences of temperature-dependent changes in host–pathogen interactions. To explore the role of lncRNAs in culm gall formation induced by the smut fungus Ustilago esculenta in Zizania latifolia, we employed RNA sequencing to identify lncRNAs and their potential cis-targets in Z. latifolia and U. esculenta under different temperatures. In Z. latifolia and U. esculenta, we identified 3194 and 173 lncRNAs as well as 126 and four potential target genes for differentially expressed lncRNAs, respectively. Further function and expression analysis revealed that lncRNA ZlMSTRG.11348 regulates amino acid metabolism in Z. latifolia and lncRNA UeMSTRG.02678 regulates amino acid transport in U. esculenta. The plant defence response was also found to be regulated by lncRNAs and suppressed in Z. latifolia infected with U. esculenta grown at 25 °C, which may result from the expression of effector genes in U. esculenta. Moreover, in Z. latifolia infected with U. esculenta, the expression of genes related to phytohormones was altered under different temperatures. Our results demonstrate that lncRNAs are important components of the regulatory networks in plant-microbe-environment interactions, and may play a part in regulating culm swelling in Z. latifolia plants.


2021 ◽  
Author(s):  
Narayan Pokhrel ◽  
Olga Genin ◽  
Dalit Sela-Donenfeld ◽  
Yuval Cinnamon

Avian embryos can halt their development for long periods at low temperature in a process called diapause and successfully resume development when reincubated at maternal body temperature. Successful resumption of development depends on different factors, including temperature. We have recently shown that embryos that enter diapause at 18 °C present a significant reduction in their ability to develop normally when put back into incubation, compared to embryos entering diapause at 12 °C. However, the mechanisms underlying these differences are unknown. To address this question, transcriptome analysis was performed to compare the effect of diapause temperature on gene expression, and to identify pathways involved in the process. Genetic comparison and pathway-enrichment analysis revealed that TGF-β and pluripotency-related pathways are differentially regulated at the two temperatures, with higher expression at 12 °C compared to 18 °C. Investigating the involvement of the TGF-β pathway revealed an essential role for BMP4 in regulating the expression of the transcription factors Nanog and Id2, which are known to regulate pluripotency and self-renewal in embryonic stem cells. BMP4 gain- and loss-of-function experiments in embryos in diapause at different temperatures revealed the main role of BMP4 in enabling the resumption of normal development following diapause. Collectively, these findings identify molecular regulators that facilitate embryos' ability to undergo diapause at different temperatures and resume a normal developmental program.


2020 ◽  
Author(s):  
A. Rouf Banday ◽  
Olusegun O. Onabajo ◽  
Seraph Han-Yin Lin ◽  
Adeola Obajemu ◽  
Joselin M. Vargas ◽  
...  

ABSTRACTAPOBEC3A (A3A) and APOBEC3B (A3B) enzymes drive APOBEC-mediated mutagenesis, but the understanding of the regulation of their mutagenic activity remains limited. Here, we showed that mutagenic and non-mutagenic A3A and A3B enzymes are produced by canonical and alternatively spliced A3A and A3B isoforms, respectively. Notably, increased expression of the canonical A3B isoform, which encodes the mutagenic A3B enzyme, predicted shorter progression-free survival of bladder cancer patients. Expression of the mutagenic A3B isoform was reduced by exon 5 skipping, generating a non-mutagenic A3B isoform. The exon 5 skipping, which was dependent on the interaction between SF3B1 splicing factor and weak branch point sites in intron 4, could be enhanced by an SF3B1 inhibitor, decreasing the production of the mutagenic A3B enzyme. Thus, our results underscore the role of A3B, especially in bladder cancer, and implicate alternative splicing of A3B as a mechanism and therapeutic target to restrict APOBEC-mediated mutagenesis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 261-261 ◽  
Author(s):  
Yukiko Komeno ◽  
Jinsong Qiu ◽  
Leo Lin ◽  
YiJun Xu ◽  
Felicitas Thol ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are a group of neoplasms that are ineffective in generating multiple lineages of myeloid cells and have various risks to progress to acute myeloid leukemia. Recent genome-wide sequencing studies reveal that mutations in genes of splicing factors are commonly associated with MDS. However, the importance of these splicing factors in hematopoiesis has been unclear and the causal effect of their mutations on MDS development remains to be determined. One of these newly identified genes is SRSF2, and its mutations have been linked to poor survival among MDS patients. Interestingly, most of SRSF2 mutations occur at proline 95 and the majority of these mutations change this proline to histidine (P95H). Given that SRSF2 is a well-characterized splicing factor involved in both constitutive and regulated splicing, we hypothesize that SRSF2 plays an important role in normal hematopoiesis and the SRSF2 mutations induce specific changes in alternative splicing that favor disease progression. We first examined the role of SRSF2 in hematopoiesis by generating Srsf2 null mutation in mouse blood cells via crossing conditional Srsf2 knockout mice (Srsf2f/f) with blood cell-specific Cre transgenic mice (Vav-Cre). The mutant mice produced significantly fewer definitive blood cells (10% of wild type controls), exhibited increased apoptosis in the remaining blood cells, and died during embryonic development. Importantly, we detected no hematopoietic stem/progenitor cells (lineage-/cKit+) in E14 fetal livers of Vav-Cre/Srsf2f/f mice. These results indicate that SRSF2 is essential for hematopoiesis during embryonic development. We next examined the role of SRSF2 in adult hematopoiesis by injecting polyIC into mice that carry a polyIC inducible Cre expression unit. Unexpectedly, after multiple polyIC treatments, the Srsf2f/f mice stayed alive during several months of observation. Time course genotyping analyses of polyIC treated mice revealed an increased rate of incomplete Srsf2 deletion in peripheral blood cells. These observations suggest that Srsf2 ablation did not cause immediate cell lethality in differentiated blood cells, but the gene is indispensable for the function of blood stem/progenitor cells. Since mutations of splicing factors are generally heterozygous in MDS patients, we also examined mice with Srsf2+/- blood cells. No obvious defect of hematopoiesis was observed under normal conditions or in response to stress with 5-FU treatment and sublethal irradiation. To gain molecular insight into the splicing activity of MDS-associated mutant forms of SRSF2, we performed large-scale alternative splicing surveys by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq) previously developed in our lab, which offers a robust and cost-effective platform for splicing profiling. Compared to vector transduction controls, we found that overexpression of both wild type and P95H SRSF2 induced many, but distinct changes in alternative splicing in lineage-negative bone marrow cells, and importantly, we noted several changes in genes with known roles in hematopoietic malignancies that were uniquely induced by the mutant SRSF2. To further link the mutations to altered splicing in MDS patients, we also applied RASL-seq to a large number of MDS patient samples with or without mutations in SRSF2 or other splicing regulators. The data revealed a specific set of alternative splicing events that are commonly linked to MDS with splicing factor mutations. These findings strongly suggest that many of these mutations in splicing regulators are gain-of-function mutations that are causal to MDS. In conclusion, we report that SRSF2 plays an essential role in hematopoietic stem/progenitor cells and that the MDS-associated mutations in SRSF2 have a dominant effect on RNA alternative splicing. These findings provide functional information and molecular basis of SRSF2 and its MDS-related mutations in hematopoiesis and related clinical disorders. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 28 (24) ◽  
pp. 4173-4185 ◽  
Author(s):  
John McElderry ◽  
Blake Carrington ◽  
Kevin Bishop ◽  
Erika Kim ◽  
Wuhong Pei ◽  
...  

Abstract DHX15, a DEAH box containing RNA helicase, is a splicing factor required for the last step of splicing. Recent studies identified a recurrent mutational hotspot, R222G, in DHX15 in ∼ 6% of acute myeloid leukemia (AML) patients that carry the fusion protein RUNX1-RUNX1T1 produced by t (8;21) (q22;q22). Studies using yeast mutants showed that substitution of G for the residue equivalent to R222 leads to loss of its helicase function, suggesting that it is a loss-of-function mutation. To elucidate the role of DHX15 during development, we established the first vertebrate knockout model with CRISPR/Cas9 in zebrafish. Our data showed that dhx15 expression is enriched in the brain, eyes, pectoral fin primordia, liver and intestinal bulb during embryonic development. Dhx15 deficiency leads to pleiotropic morphological phenotypes in homozygous mutant embryos starting at 3 days post fertilization (dpf) that result in lethality by 7 dpf, revealing an essential role during embryonic development. RNA-seq analysis suggested important roles of Dhx15 in chromatin and nucleosome assembly and regulation of the Mdm2-p53 pathway. Interestingly, exons corresponding to the alternate transcriptional start sites for tp53 and mdm2 were preferentially expressed in the mutant embryos, leading to significant upregulation of their alternate isoforms, Δ113p53 (orthologous to Δ133p53 isoform in human) and mdm2-P2 (isoform using distal promoter P2), respectively. We speculate that these alterations in the Mdm2-p53 pathway contribute to the development of AML in patients with t(8;21) and somatically mutated DHX15.


2020 ◽  
Author(s):  
Ren Yujun ◽  
Wang Wanzhen ◽  
Lan Wei ◽  
Schenke Dirk ◽  
Cai Daguang ◽  
...  

AbstractMicroRNAs (miRNAs) negatively regulate gene expression by cleaving the target mRNA and/or impairing its translation, thereby playing a crucial role in plant development and environmental stress responses. In Arabidopsis, MIR840 is located within the overlapping 3’UTR of PPR and WHIRLY3 (WHY3), both being predicted targets of miR840. Gain- and loss-of-function of miR840 in Arabidopsis resulted in opposite senescent phenotypes. Highest expression of pri-miR840 is observed at senescence initiation, and is negatively correlated with a significant reduction of PPR transcripts but not of WHY3. Although WHY3 transcript levels were not significantly affected by miR840 overexpression, its protein synthesis was strongly reduced. Mutating the cleavage sites or replacing the target sequences abolishes the miR840-mediated degradation of PPR transcripts and inhibition of WHY3 translation. In support for this, concurrent knock-down of both PPR and WHY3 in the WT resulted in the senescent phenotype resembling that of the miR840-overexpressing mutant. This indicates that both PRR and WHY3 are targets in the miR840-regulated senescent pathway. Moreover, single knockout mutant of PPR or WHY3 shows a convergent up-regulated subset of senescence-associated genes, which are also found among those induced by miR840 overexpression. Our data provide evidences for a regulatory role of miR840 in plant senescence.HighlightMicroRNA840 (miR840) has a unique miRNA-target configuration regulating PPR and WHIRLY3 genes in Arabidopsis. MiR840 is highly expressed at the onset of plant senescent stage. Both PPR and WHIRLY3 transcripts are specifically targeted in vivo within their 3’UTR region by mature miR840 or its star strand in vivo. Interestingly, PPR expression is mainly repressed on mRNA transcript level by cleavage, while WHIRLY3 is predominantly translationally inhibited. We conclude that miR840 enhances plant senescence via post transcriptional gene silencing of PPR and WHIRLY3, which appear to be novel negative joint regulators of plant senescence.Footnote: The author(s) responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the intructions for Authors is: Ying Miao ([email protected])


Sign in / Sign up

Export Citation Format

Share Document