scholarly journals Interaction Between the SNARE SYP121 and the Plasma Membrane Aquaporin PIP2;7 Involves Different Protein Domains

2021 ◽  
Vol 11 ◽  
Author(s):  
Timothée Laloux ◽  
Irwin Matyjaszczyk ◽  
Simon Beaudelot ◽  
Charles Hachez ◽  
François Chaumont

Plasma membrane intrinsic proteins (PIPs) are channels facilitating the passive diffusion of water and small solutes. Arabidopsis PIP2;7 trafficking occurs through physical interaction with SNARE proteins including the syntaxin SYP121, a plasma membrane Qa-SNARE involved in membrane fusion. To better understand the interaction mechanism, we aimed at identifying the interaction motifs in SYP121 and PIP2;7 using ratiometric bimolecular fluorescence complementation assays in Nicotiana benthamiana. SYP121 consists of four regions, N, H, Q, and C, and sequential deletions revealed that the C region, containing the transmembrane domain, as well as the H and Q regions, containing the Habc and Qa-SNARE functional domains, interact with PIP2;7. Neither the linker between the Habc and the Qa-SNARE domains nor the H or Q regions alone could fully restore the interaction with PIP2;7, suggesting that the interacting motif depends on the conformation taken by the HQ region. When investigating the interacting motif(s) in PIP2;7, we observed that deletion of the cytosolic N- and/or C- terminus led to a significant decrease in the interaction with SYP121. Shorter deletions revealed that at the N-terminal amino acid residues 18–26 were involved in the interaction. Domain swapping experiments between PIP2;7 and PIP2;6, a PIP isoform that does not interact with SYP121, showed that PIP2;7 N-terminal part up to the loop C was required to restore the full interaction signal, suggesting that, as it is the case for SYP121, the interaction motif(s) in PIP2;7 depend on the protein conformation. Finally, we also showed that PIP2;7 physically interacted with other Arabidopsis SYP1s and SYP121 orthologs.

1999 ◽  
Vol 112 (11) ◽  
pp. 1721-1732 ◽  
Author(s):  
M.J. Francis ◽  
E.E. Jones ◽  
E.R. Levy ◽  
R.L. Martin ◽  
S. Ponnambalam ◽  
...  

The protein encoded by the Menkes disease gene (MNK) is localised to the Golgi apparatus and cycles between the trans-Golgi network and the plasma membrane in cultured cells on addition and removal of copper to the growth medium. This suggests that MNK protein contains active signals that are involved in the retention of the protein to the trans-Golgi network and retrieval of the protein from the plasma membrane. Previous studies have identified a signal involved in Golgi retention within transmembrane domain 3 of MNK. To identify a motif sufficient for retrieval of MNK from the plasma membrane, we analysed the cytoplasmic domain, downstream of transmembrane domain 7 and 8. Chimeric constructs containing this cytoplasmic domain fused to the reporter molecule CD8 localised the retrieval signal(s) to 62 amino acids at the C terminus. Further studies were performed on putative internalisation motifs, using site-directed mutagenesis, protein expression, chemical treatment and immunofluorescence. We observed that a di-leucine motif (L1487L1488) was essential for rapid internalisation of chimeric CD8 proteins and the full-length Menkes cDNA from the plasma membrane. We suggest that this motif mediates the retrieval of MNK from the plasma membrane into the endocytic pathway, via the recycling endosomes, but is not sufficient on its own to return the protein to the Golgi apparatus. These studies provide a basis with which to identify other motifs important in the sorting and delivery of MNK from the plasma membrane to the Golgi apparatus.


2018 ◽  
Vol 19 (11) ◽  
pp. 3591 ◽  
Author(s):  
Aki Nishiyama ◽  
Sakura Matsuta ◽  
Genki Chaya ◽  
Takafumi Itoh ◽  
Kotaro Miura ◽  
...  

Heterotrimeric G proteins are important molecules for regulating plant architecture and transmitting external signals to intracellular target proteins in higher plants and mammals. The rice genome contains one canonical α subunit gene (RGA1), four extra-large GTP-binding protein genes (XLGs), one canonical β subunit gene (RGB1), and five γ subunit genes (tentatively named RGG1, RGG2, RGG3/GS3/Mi/OsGGC1, RGG4/DEP1/DN1/OsGGC3, and RGG5/OsGGC2). RGG1 encodes the canonical γ subunit; RGG2 encodes the plant-specific type of γ subunit with additional amino acid residues at the N-terminus; and the remaining three γ subunit genes encode the atypical γ subunits with cysteine abundance at the C-terminus. We aimed to identify the RGG3/GS3/Mi/OsGGC1 gene product, Gγ3, in rice tissues using the anti-Gγ3 domain antibody. We also analyzed the truncated protein, Gγ3∆Cys, in the RGG3/GS3/Mi/OsGGC1 mutant, Mi, using the anti-Gγ3 domain antibody. Based on nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, the immunoprecipitated Gγ3 candidates were confirmed to be Gγ3. Similar to α (Gα) and β subunits (Gβ), Gγ3 was enriched in the plasma membrane fraction, and accumulated in the flower tissues. As RGG3/GS3/Mi/OsGGC1 mutants show the characteristic phenotype in flowers and consequently in seeds, the tissues that accumulated Gγ3 corresponded to the abnormal tissues observed in RGG3/GS3/Mi/OsGGC1 mutants.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2203-2203 ◽  
Author(s):  
Maria de la Fuente ◽  
Amal Arachiche ◽  
Marvin T. Nieman

Abstract Abstract 2203 Thrombin is a potent platelet agonist. Thrombin activates platelets and other cells of the cardiovascular system by cleaving its receptors, protease activated receptor 1 (PAR1), PAR4 or both. PARs are G-protein coupled receptors that activate cellular signaling through Gq and G12/13. There is structural evidence that GPCRs, as a class, function as dimers and that dimerization can alter signaling specificity. Our previous studies have determined that PAR4 forms homodimers and have mapped the homodimer interface to transmembrane helix 4 (TM4). We have also shown that coexpression of PAR1 with PAR4 lowers the threshold for PAR4 activation by thrombin ∼10-fold. The purpose of the current study is to examine the physical interaction between PAR1 and PAR4 and how these interactions influence PAR1's ability to enhance PAR4 activation. The PAR1-PAR4 heterodimers were examined by bioluminescence resonance energy transfer (BRET) and bimolecular fluorescence complementation (BiFC). Similar to our previous studies with PAR4 homodimers, PAR1 homodimers were constitutive and did not require receptor activation. In contrast, PAR1-PAR4 heterodimers were not detected under basal conditions. However, when the cells were stimulated with 10 nM thrombin, we were able to detect a strong interaction between PAR1 and PAR4. We next examined if PAR1-PAR4 heterodimers would be induced by stimulating PAR1 or PAR4 individually with their agonist peptides TFLLRN (100 μM) or AYPGKF (500 μM), respectively. The agonist peptides were unable to induce heterodimers when added to the cells individually or simultaneously. These data demonstrate that PAR1 and PAR4 require allosteric changes induced by receptor cleavage by thrombin to mediate heterodimer formation. To examine this further, we removed 37 amino acids from the C-terminus of PAR1, which disrupts the eighth helix. The truncated PAR1 was able to form constitutive heterodimers with PAR4 and these heterodimers were unaffected by thrombin. These data suggest that PAR1 is the allosteric modulator of the PAR1-PAR4 heterodimers. Finally, the stability of the constitutive PAR1 and PAR4 homodimers was unchanged in response to thrombin or the agonist peptides. Taken together, these data suggest that PAR1 and PAR4 have a dynamic interaction depending on the context of their expression. Since PAR1 is an attractive antiplatelet target, the molecular interactions of this receptor on the cells surface must be taken into account when developing and characterizing these antagonists. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 452 (3) ◽  
pp. 443-455 ◽  
Author(s):  
Paolo Scudieri ◽  
Elvira Sondo ◽  
Emanuela Caci ◽  
Roberto Ravazzolo ◽  
Luis J. V. Galietta

TMEM16A and TMEM16B proteins are CaCCs (Ca2+-activated Cl− channels) with eight putative transmembrane segments. As shown previously, expression of TMEM16B generates CaCCs characterized by a 10-fold lower Ca2+ affinity and by faster activation and deactivation kinetics with respect to TMEM16A. To investigate the basis of the different properties, we generated chimaeric proteins in which different domains of the TMEM16A protein were replaced by the equivalent domains of TMEM16B. Replacement of the N-terminus, TMD (transmembrane domain) 1–2, the first intracellular loop and TMD3–4 did not change the channel's properties. Instead, replacement of intracellular loop 3 decreased the apparent Ca2+ affinity by nearly 8-fold with respect to wild-type TMEM16A. In contrast, the membrane currents derived from chimaeras containing TMD7–8 or the C-terminus of TMEM16B showed higher activation and deactivation rates without a change in Ca2+ sensitivity. Significantly accelerated kinetics were also found when the entire C-terminus of the TMEM16A protein (77 amino acid residues) was deleted. Our findings indicate that the third intracellular loop of TMEM16A and TMEM16B is the site involved in Ca2+-sensitivity, whereas the C-terminal part, including TMD7–8, affect the rate of transition between the open and the closed state.


1997 ◽  
Vol 110 (9) ◽  
pp. 1073-1081 ◽  
Author(s):  
W.E. Achanzar ◽  
S. Ward

During maturation of spermatids to motile spermatozoa in Caenorhabditis elegans, large vesicles called membranous organelles (MOs) fuse with the spermatid plasma membrane. Mutations in the gene fer-1 cause abnormal spermatozoa in which the MOs do not fuse, although they abut the plasma membrane normally. Here we describe the fer-1 gene, which we found to be approximately 8.6 kb in length and to encode a 6.2 kb transcript whose expression is limited to the primary spermatocytes, the cells in which the MOs form. fer-1 is predicted to encode a 235 kDa protein which is highly charged except for a putative transmembrane domain near the C terminus. We identified the mutations associated with five fer-1 alleles, all of which are missense mutations causing single amino acid changes. FER-1 is not similar to any characterized proteins in sequence databases, nor does it contain known functional motifs other than the predicted transmembrane domain. The C-terminal transmembrane domain makes FER-1 resemble some viral fusion proteins, suggesting it may play a direct role in MO-plasma membrane fusion. FER-1 does show significant sequence similarity to several predicted human proteins of unknown function. Two of the identified fer-1 mutations are located in regions of similarity between FER-1 and two of these predicted proteins. This strengthens the biological significance of these similarities and suggests these regions of similarity represent functionally important domains of FER-1 and the human proteins.


2010 ◽  
Vol 21 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Ian C. Fields ◽  
Shelby M. King ◽  
Elina Shteyn ◽  
Richard S. Kang ◽  
Heike Fölsch

Polarized epithelial cells coexpress two almost identical AP-1 clathrin adaptor complexes: the ubiquitously expressed AP-1A and the epithelial cell–specific AP-1B. The only difference between the two complexes is the incorporation of the respective medium subunits μ1A or μ1B, which are responsible for the different functions of AP-1A and AP-1B in TGN to endosome or endosome to basolateral membrane targeting, respectively. Here we demonstrate that the C-terminus of μ1B is important for AP-1B recruitment onto recycling endosomes. We define a patch of three amino acid residues in μ1B that are necessary for recruitment of AP-1B onto recycling endosomes containing phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3]. We found this lipid enriched in recycling endosomes of epithelial cells only when AP-1B is expressed. Interfering with PI(3,4,5)P3 formation leads to displacement of AP-1B from recycling endosomes and missorting of AP-1B–dependent cargo to the apical plasma membrane. In conclusion, PI(3,4,5)P3 formation in recycling endosomes is essential for AP-1B function.


2012 ◽  
Vol 441 (3) ◽  
pp. 1007-1016 ◽  
Author(s):  
Ingrid T. G. W. Bijsmans ◽  
Rianne A. M. Bouwmeester ◽  
Joachim Geyer ◽  
Klaas Nico Faber ◽  
Stan F. J. van de Graaf

The NTCP (Na+–taurocholate co-transporting protein)/SLC10A [solute carrier family 10 (Na+/bile acid co-transporter family)] 1 is tightly controlled to ensure hepatic bile salt uptake while preventing toxic bile salt accumulation. Many transport proteins require oligomerization for their activity and regulation. This is not yet established for bile salt transporters. The present study was conducted to elucidate the oligomeric state of NTCP. Chemical cross-linking revealed the presence of NTCP dimers in rat liver membranes and U2OS cells stably expressing NTCP. Co-immunoprecipitation of tagged NTCP proteins revealed a physical interaction between subunits. The C-terminus of NTCP was not required for subunit interaction, but was essential for exit from the ER (endoplasmic reticulum). NTCP without its C-terminus (NTCP Y307X) retained full-length wtNTCP (wild-type NTCP) in the ER in a dominant fashion, suggesting that dimerization occurs early in the secretory pathway. FRET (fluorescence resonance energy transfer) using fluorescently labelled subunits further demonstrated that dimerization persists at the plasma membrane. NTCP belongs to the SLC10A protein family which consists of seven members. NTCP co-localized in U2OS cells with SLC10A4 and SLC10A6, but not with SLC10A3, SLC10A5 or SLC10A7. SLC10A4 and SLC10A6 co-immunoprecipitated with NTCP, demonstrating that heteromeric complexes can be formed between SLC10A family members in vitro. Expression of SLC10A4 and NTCP Y307X resulted in a reduction of NTCP abundance at the plasma membrane and NTCP-mediated taurocholate uptake, whereas expression of SLC10A6 or NTCP E257N, an inactive mutant, did not affect NTCP function. In conclusion, NTCP adopts a dimeric structure in which individual subunits are functional. Bile salt uptake is influenced by heterodimerization when this impairs NTCP plasma membrane trafficking.


2002 ◽  
Vol 76 (8) ◽  
pp. 3720-3730 ◽  
Author(s):  
Séverine Carrère-Kremer ◽  
Claire Montpellier-Pala ◽  
Laurence Cocquerel ◽  
Czeslaw Wychowski ◽  
François Penin ◽  
...  

ABSTRACT Although biological and biochemical data have been accumulated on most hepatitis C virus proteins, the structure and function of the 63-amino-acid p7 polypeptide of this virus have never been investigated. In this work, sequence analyses predicted that p7 contains two transmembrane passages connected by a short hydrophilic segment. The C-terminal transmembrane domain of p7 was predicted to function as a signal sequence, which was confirmed experimentally by analyzing the translocation of a reporter glycoprotein fused at its C terminus. The p7 polypeptide was tagged either with the ectodomain of CD4 or with a Myc epitope to study its membrane integration, its subcellular localization, and its topology. Alkaline extraction studies confirmed that p7 is an integral membrane polypeptide. The CD4-p7 chimera was detected by immunofluorescence on the surface of nonpermeabilized cells, indicating that it is exported to the plasma membrane. However, pulse-chase analyses showed that only approximately 20% of endoglycosidase H-resistant CD4-p7 was detected after long chase times, suggesting that a large proportion of p7 stays in an early compartment of the secretory pathway. Finally, by inserting a Myc epitope in several positions of p7 and analyzing the accessibility of this epitope on the plasma membrane of HepG2 cells, we showed that p7 has a double membrane-spanning topology, with both its N and C termini oriented toward the extracellular environment. Altogether, these data indicate that p7 is a polytopic membrane protein that could have a functional role in several compartments of the secretory pathway.


2018 ◽  
Vol 84 (6) ◽  
Author(s):  
Tingting Guo ◽  
Yongping Xin ◽  
Chenchen Zhang ◽  
Jian Kong

ABSTRACT In double-stranded DNA bacteriophages, infection cycles are ended by host cell lysis through the action of phage-encoded endolysins and holins. The precise timing of lysis is regulated by the holin inhibitors, named antiholins. Sequence analysis has revealed that holins with a single transmembrane domain (TMD) are prevalent in Lactobacillus bacteriophages. A temperate bacteriophage of Lactobacillus fermentum , ϕPYB5, has a two-component lysis cassette containing endolysin Lyb5 and holin Hyb5. The hyb5 gene is 465 bp long, encoding 154 amino acid residues with an N-terminal TMD and a large cytoplasmic C-terminal domain. However, the N terminus contains no dual-start motif, suggesting that Hyb5 oligomerization could be inhibited by a specific antiholin. Two internal open reading frames in hyb5 , hyb5 157–465 and hyb5 209–328 , were identified as genes encoding putative antiholins for Hyb5 and were coexpressed in trans with lyb5-hyb5 in Escherichia coli . Surprisingly, host cell lysis was delayed by Hyb5 157–465 but accelerated by abolishment of the translation initiation site of this protein, indicating that Hyb5 157–465 acts as an antiholin to holin Hyb5. Moreover, deletion of 45 amino acid residues at the C terminus of Hyb5 resulted in early cell lysis, even in the presence of Hyb5 157–465 , implying that the interaction between Hyb5 157–465 and Hyb5 occurs at the C terminus of the holin. In vivo and in vitro , Hyb5 157–465 and Hyb5 were detected in the cytoplasmic and membrane fractions, respectively, and pulldown assays confirmed direct interaction between Hyb5 157–465 and Hyb5. All the results suggest that Hyb5 157–465 is an antiholin of Hyb5 that is involved in lysis timing. IMPORTANCE Phage-encoded holins are considered to be the “molecular clock” of phage infection cycles. The interaction between a holin and its inhibitor antiholin precisely regulates the timing of lysis of the host cells. As a prominent biological group in dairy processes, phages of lactic acid bacteria (LAB) have been extensively genome sequenced. However, little is known about the antiholins of LAB phage holins and the holin-antiholin interactions. In this work, we identified an in-frame antiholin against the class III holin of Lactobacillus fermentum phage ϕPYB5, Hyb5, and demonstrated its interaction with the cognate holin, which occurred in the bacterial cytoplasm.


Sign in / Sign up

Export Citation Format

Share Document