scholarly journals Identification and Characterization of the ERF Subfamily B3 Group Revealed GhERF13.12 Improves Salt Tolerance in Upland Cotton

2021 ◽  
Vol 12 ◽  
Author(s):  
Lili Lu ◽  
Ghulam Qanmber ◽  
Jie Li ◽  
Mengli Pu ◽  
Guoquan Chen ◽  
...  

The APETALA2 (AP2)/ethylene response factor plays vital functions in response to environmental stimulus. The ethylene response factor (ERF) subfamily B3 group belongs to the AP2/ERF superfamily and contains a single AP2/ERF domain. Phylogenetic analysis of the ERF subfamily B3 group genes from Arabdiposis thaliana, Gossypium arboreum, Gossypium hirsutum, and Gossypium raimondii made it possible to divide them into three groups and showed that the ERF subfamily B3 group genes are conserved in cotton. Collinearity analysis identified172 orthologous/paralogous gene pairs between G. arboreum and G. hirsutum; 178 between G. hirsutum and G. raimondii; and 1,392 in G. hirsutum. The GhERF subfamily B3 group gene family experienced massive gene family expansion through either segmental or whole genome duplication events, with most genes showing signature compatible with the action of purifying selection during evolution. Most G. hirsutum ERF subfamily B3 group genes are responsive to salt stress. GhERF13.12 transgenic Arabidopsis showed enhanced salt stress tolerance and exhibited regulation of related biochemical parameters and enhanced expression of genes participating in ABA signaling, proline biosynthesis, and ROS scavenging. In addition, the silencing of the GhERF13.12 gene leads to increased sensitivity to salt stress in cotton. These results indicate that the ERF subfamily B3 group had remained conserved during evolution and that GhERF13.12 induces salt stress tolerance in Arabidopsis and cotton.

Author(s):  
Rabia Akram ◽  
Farah Deeba ◽  
Maryam Zain ◽  
Nadia Iqbal

Abiotic and biotic stresses are the causes of drastic changes in plants growth and development.These stresses effect crop production and quality, thus result is in economic lose and food insecurity. Many factors play vital role in regulating growth of plants along with developmental pathways during biotic and abiotic stresses. Transcription factors are proteins that control physiological, developmental and stress responses in plants. Ethylene response factors belong to the biggest family of transcription factors, known to participate in various stress tolerance like drought, heat, salt and cold. They are significant regulators of plant gene expression. The objective of this review is to present how ethylene response factor family proteins became the focus of stress tolerance as well as the development and growth of plants.


Plant Science ◽  
2021 ◽  
Vol 312 ◽  
pp. 111055
Author(s):  
Guoquan Chen ◽  
Zhao Liu ◽  
Shengdong Li ◽  
Ghulam Qanmber ◽  
Le Liu ◽  
...  

2018 ◽  
Vol 164 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Jian-Ping An ◽  
Ji-Fang Yao ◽  
Rui-Rui Xu ◽  
Chun-Xiang You ◽  
Xiao-Fei Wang ◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 454 ◽  
Author(s):  
Chuluuntsetseg Jadamba ◽  
Kiyoon Kang ◽  
Nam-Chon Paek ◽  
Soo In Lee ◽  
Soo-Cheul Yoo

Expansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of OsEXPA7 involved in salt stress tolerance. Phenotypic analysis showed that OsEXPA7 overexpression remarkably enhanced tolerance to salt stress. OsEXPA7 was highly expressed in the shoot apical meristem, root, and the leaf sheath. Promoter activity of OsEXPA7:GUS was mainly observed in vascular tissues of roots and leaves. Morphological analysis revealed structural alterations in the root and leaf vasculature of OsEXPA7 overexpressing (OX) lines. OsEXPA7 overexpression resulted in decreased sodium ion (Na+) and accumulated potassium ion (K+) in the leaves and roots. Under salt stress, higher antioxidant activity was also observed in the OsEXPA7-OX lines, as indicated by lower reactive oxygen species (ROS) accumulation and increased antioxidant activity, when compared with the wild-type (WT) plants. In addition, transcriptional analysis using RNA-seq and RT-PCR revealed that genes involved in cation exchange, auxin signaling, cell-wall modification, and transcription were differentially expressed between the OX and WT lines. Notably, salt overly sensitive 1, which is a sodium transporter, was highly upregulated in the OX lines. These results suggest that OsEXPA7 plays an important role in increasing salt stress tolerance by coordinating sodium transport, ROS scavenging, and cell-wall loosening.


Sign in / Sign up

Export Citation Format

Share Document