scholarly journals Exogenous Putrescine Alleviates Drought Stress by Altering Reactive Oxygen Species Scavenging and Biosynthesis of Polyamines in the Seedlings of Cabernet Sauvignon

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaqi Zhao ◽  
Xuefei Wang ◽  
Xingbo Pan ◽  
Qianqian Jiang ◽  
Zhumei Xi

Climate change imposes intensive dry conditions in most grape-growing regions. Drought stress is one of the most devastating abiotic factors threatening grape growth, yield, and fruit quality. In this study, the alleviation effect of exogenous putrescine (Put) was evaluated using the seedlings of Cabernet Sauvignon (Vitis vinifera L.) subjected to drought stress. The phenotype, photosynthesis index, membrane injury index (MII), and antioxidant system, as well as the dynamic changes of endogenous polyamines (PAs) of grape seedlings, were monitored. Results showed that drought stress increased the MII, lipid peroxidation, and the contents of reactive oxygen species (ROS) (H2O2 and O2–), while it decreased the antioxidant enzyme activity and the net photosynthesis rate (Pn). However, the application of Put alleviated the effects of drought stress by altering ROS scavenging, enhancing the antioxidant system, and increasing the net Pn. Put distinctly increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the contents of ascorbic acid (AsA) and glutathione (GSH). Meanwhile, exogenous Put also promoted the metabolism of endogenous PAs by upregulating their synthetic genes. Our results confirmed that the exogenous application of Put can enhance the antioxidant capacity as well as alter the PA pool, which provides better drought tolerance for Cabernet Sauvignon seedlings.

2016 ◽  
Vol 43 (4) ◽  
pp. 337 ◽  
Author(s):  
Ana Furlan ◽  
Eliana Bianucci ◽  
María del Carmen Tordable ◽  
Aleysia Kleinert ◽  
Alexander Valentine ◽  
...  

Drought stress is one of the most important environmental factors that adversely affect the productivity and quality of crops. Most studies focus on elucidating plant responses to this stress but the reversibility of these effects is less known. The aim of this work was to evaluate whether drought-stressed peanut (Arachis hypogaea L.) plants were capable of recovering their metabolism upon rehydration, with a focus on their antioxidant system. Peanut plants in the flowering phase (30 days after sowing) were exposed to drought stress by withholding irrigation during 14 days and subsequent rehydration during 3 days. Under these conditions, physiological status indicators, reactive oxygen species production and antioxidant system activity were evaluated. Under drought stress, the stomatal conductance, photosynthetic quantum yield and 13C : 12C ratio of the peanut plants were negatively affected, and also they accumulated reactive oxygen species. The antioxidant system of peanut plants showed increases in superoxide dismutase-, ascorbate peroxidase- and glutathione reductase-specific activities, as well as the total ascorbate content. All of these responses were reversed upon rehydration at 3 days. The efficient and dynamic regulation of variables related to photosynthesis and the antioxidant system during a drought and rehydration cycle in peanut plants was demonstrated. It is suggested that the activation of the antioxidant system could mediate the signalling of drought stress responses that enable the plant to survive and recover completely within 3 days of rehydration.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Kaihua Ji ◽  
Lianying Fang ◽  
Hui Zhao ◽  
Qing Li ◽  
Yang Shi ◽  
...  

Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.


Author(s):  
Varshinie Pillai ◽  
Leslie Buck ◽  
Ebrahim Lari

Goldfish are one of a few species able to avoid cellular damage during month-long periods in severely hypoxic environments. By suppressing action potentials in excitatory glutamatergic neurons, the goldfish brain decreases its overall energy expenditure. Co-incident with reductions in O2 availability is a natural decrease in cellular reactive oxygen species (ROS) generation, which has been proposed to function as part of a low oxygen signal transduction pathway. Therefore, using live-tissue fluorescence microscopy, we found that ROS production decreased by 10% with the onset of anoxia in goldfish telencephalic brain slices. Employing whole-cell patch-clamp recording, we found that like severe hypoxia the ROS scavengers N-acetyl cysteine (NAC) and MitoTEMPO, added during normoxic periods, depolarized membrane potential (severe hypoxia -73.6 to – 61.4 mV; NAC -76.6 to -66.2 mV; and MitoTEMPO -71.5 mV to -62.5 mV) and increased whole-cell conductance (severe hypoxia 5.7 to 8.0 nS; NAC 6 nS to 7.5 nS; and MitoTEMPO 6.0 nS to 7.6 nS). Also, in a subset of active pyramidal neurons these treatments reduced action potential firing frequency (severe hypoxia 0.18 Hz to 0.03 Hz; NAC 0.27 Hz to 0.06 Hz and MitoTEMPO 0.35 Hz to 0.08 Hz ). Neither severe hypoxia nor ROS scavenging impacted action potential threshold. The addition of exogenous hydrogen peroxide could reverse the effects of the antioxidants. Taken together, this supports a role for a reduction in [ROS] as a low oxygen signal in goldfish brain.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1004
Author(s):  
Ignacio Jofré ◽  
Francisco Matus ◽  
Daniela Mendoza ◽  
Francisco Nájera ◽  
Carolina Merino

Manganese (Mn) oxidation is performed through oxidative Mn-oxidizing bacteria (MnOxb) as the main bio-weathering mechanism for Mn(III/IV) deposits during soil formation. However, with an increase in temperature, the respiration rate also increases, producing Reactive Oxygen Species (ROS) as by-products, which are harmful to microbial cells. We hypothesize that bacterial ROS oxidize Mn(II) to Mn(III/IV) as a secondary non-enzymatic temperature-dependent mechanism for cell protection. Fourteen MnOxb were isolated from Antarctic soils under the global warming effect, and peroxidase (PO) activity, ROS, and Mn(III/IV) production were evaluated for 120 h of incubation at 4 °C, 15 °C, and 30 °C. ROS contributions to Mn oxidation were evaluated in Arthrobacter oxydans under antioxidant (Trolox) and ROS-stimulated (menadione) conditions. The Mn(III/IV) concentration increased with temperature and positively correlated with ROS production. ROS scavenging with Trolox depleted the Mn oxidation, and ROS-stimulant increased the Mn precipitation in A. oxydans. Increasing the Mn(II) concentration caused a reduction in the membrane potential and bacterial viability, which resulted in Mn precipitation on the bacteria surface. In conclusion, bacterial ROS production serves as a complementary non-enzymatic temperature-dependent mechanism for Mn(II) oxidation as a response in warming environments.


Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 105 ◽  
Author(s):  
Janků ◽  
Luhová ◽  
Petřivalský

Reactive oxygen species (ROS) have been recognized as important signaling compoundsof major importance in a number of developmental and physiological processes in plants. Theexistence of cellular compartments enables efficient redox compartmentalization and ensuresproper functioning of ROS‐dependent signaling pathways. Similar to other organisms, theproduction of individual ROS in plant cells is highly localized and regulated bycompartment‐specific enzyme pathways on transcriptional and post‐translational level. ROSmetabolism and signaling in specific compartments are greatly affected by their chemicalinteractions with other reactive radical species, ROS scavengers and antioxidant enzymes. Adysregulation of the redox status, as a consequence of induced ROS generation or decreasedcapacity of their removal, occurs in plants exposed to diverse stress conditions. During stresscondition, strong induction of ROS‐generating systems or attenuated ROS scavenging can lead tooxidative or nitrosative stress conditions, associated with potential damaging modifications of cellbiomolecules. Here, we present an overview of compartment‐specific pathways of ROS productionand degradation and mechanisms of ROS homeostasis control within plant cell compartments.


2020 ◽  
Vol 21 (16) ◽  
pp. 5899 ◽  
Author(s):  
Adam Augustyniak ◽  
Izabela Pawłowicz ◽  
Katarzyna Lechowicz ◽  
Karolina Izbiańska-Jankowska ◽  
Magdalena Arasimowicz-Jelonek ◽  
...  

Though winter-hardiness is a complex trait, freezing tolerance was proved to be its main component. Species from temperate regions acquire tolerance to freezing in a process of cold acclimation, which is associated with the exposure of plants to low but non-freezing temperatures. However, mechanisms of cold acclimation in Lolium-Festuca grasses, important for forage production in Europe, have not been fully recognized. Thus, two L. multiflorum/F. arundinacea introgression forms with distinct freezing tolerance were used herein as models in the comprehensive research to dissect these mechanisms in that group of plants. The work was focused on: (i) analysis of cellular membranes’ integrity; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gas exchange; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); (iii) analysis of plant antioxidant capacity (reactive oxygen species generation; gene expression, protein accumulation, and activity of selected enzymes); and (iv) analysis of Cor14b accumulation, under cold acclimation. The more freezing tolerant introgression form revealed a higher integrity of membranes, an ability to cold acclimate its photosynthetic apparatus and higher water use efficiency after three weeks of cold acclimation, as well as a higher capacity of the antioxidant system and a lower content of reactive oxygen species in low temperature.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 102 ◽  
Author(s):  
Ewa Muszyńska ◽  
Mateusz Labudda ◽  
Adam Kral

This research aimed to indicate mechanisms involved in protection against the imbalanced generation of reactive oxygen species (ROS) during heavy metals (HMs) exposition of Silene vulgaris ecotypes with different levels of metal tolerance. Specimens of non-metallicolous (NM), calamine (CAL), and serpentine (SER) ecotypes were treated in vitro with Zn, Pb, and Cd ions applied simultaneously in concentrations that reflected their contents in natural habitats of the CAL ecotype (1× HMs) and 2.5- or 5.0-times higher than the first one. Our findings confirmed the sensitivity of the NM ecotype and revealed that the SER ecotype was not fully adapted to the HM mixture, since intensified lipid peroxidation, ultrastructural alternations, and decline in photosynthetic pigments’ content were ascertained under HM treatment. These changes resulted from insufficient antioxidant defense mechanisms based only on ascorbate peroxidase (APX) activity assisted (depending on HMs concentration) by glutathione-S-transferase (GST) and peroxidase activity at pH 6.8 in the NM ecotype or by GST and guaiacol-type peroxidase in the SER one. In turn, CAL specimens showed a hormetic reaction to 1× HMs, which manifested by both increased accumulation of pigments and most non-enzymatic antioxidants and enhanced activity of catalase and enzymes from the peroxidase family (with the exception of APX). Interestingly, no changes in superoxide dismutase activity were noticed in metallicolous ecotypes. To sum up, the ROS scavenging pathways in S. vulgaris relied on antioxidants specific to the respective ecotypes, however the synthesis of polyphenols was proved to be a universal reaction to HMs.


Sign in / Sign up

Export Citation Format

Share Document