scholarly journals Metabolic Profiling of Resistant and Susceptible Tobaccos Response Incited by Ralstonia pseudosolanacearum Causing Bacterial Wilt

2022 ◽  
Vol 12 ◽  
Author(s):  
Liang Yang ◽  
Zhouling Wei ◽  
Marc Valls ◽  
Wei Ding

The causal agent of bacterial wilt, Ralstonia pseudosolanacearum, can cause significant economic losses during tobacco production. Metabolic analyses are a useful tool for the comprehensive identification of plant defense response metabolites. In this study, a gas chromatography-mass spectrometry (GC-MS) approach was used to identify metabolites differences in tobacco xylem sap in response to R. pseudosolanacearum CQPS-1 in two tobacco cultivars: Yunyan87 (susceptible to R. pseudosolanacearum) and K326 (quantitatively resistant). Metabolite profiling 7 days post inoculation with R. pseudosolanacearum identified 88 known compounds, 42 of them enriched and 6 depleted in the susceptible cultivar Yunyan87, while almost no changes occurred in quantitatively resistant cultivar K326. Putrescine was the most enriched compound (12-fold) in infected susceptible tobacco xylem, followed by methyl-alpha-d-glucopyranoside (9-fold) and arabinitol (6-fold). Other sugars, amino acids, and organic acids were also enriched upon infection. Collectively, these metabolites can promote R. pseudosolanacearum growth, as shown by the increased growth of bacterial cultures supplemented with xylem sap from infected tobacco plants. Comparison with previous metabolic data showed that beta-alanine, phenylalanine, and leucine were enriched during bacterial wilt in both tobacco and tomato xylem.

Author(s):  
Brian Ingel ◽  
Denise Caldwell ◽  
Fiona Duong ◽  
Dilworth Parkinson ◽  
Katherine McCulloh ◽  
...  

Ralstonia cause wilt diseases by colonizing xylem vessels and disrupting water transport. The dogma is that bacterial biomass clogs vessels and reduces the flow of xylem sap due to Ralstonia abundance. However, the physiological mechanism of xylem disruption during bacterial wilt is untested. Using a tomato and Ralstonia pseudosolanacearum GMI1000 model, we visualized and quantified spatiotemporal dynamics of xylem disruption during bacterial wilt. First, we measured stomatal conductance of leaflets on mock-inoculated and wilt-symptomatic plants. Wilted leaflets had reduced stomatal conductance, as did turgid leaflets on the same petiole as wilted leaflets. Next, we used X-ray microcomputed tomography (X-ray microCT) and light microscopy to differentiate between mechanisms of xylem disruption: blockage by bacterial biomass, blockage by vascular tyloses, or sap displacement by gas embolisms. We imaged intact plant stems to quantify embolized vessels. Embolized vessels were rare, but infected plants with low bacterial populations had a non-significant trend of more vessel embolisms. To test that vessels are clogged during bacterial wilt, we imaged excised stems after brief dehydration. Most vessels in mock-infected plants emptied their contents after excision, but non-conductive clogged vessels were abundant in infected plants by 2 days post infection. At wilt onset when bacterial populations exceeded 5x108 cfu/g stem tissue, approximately half of the vessels were clogged with electron-dense bacterial biomass. We found no evidence of tyloses in X-ray microCT reconstructions or from light microscopy of preserved stems. Therefore, bacterial blockage of vessels appears to be the principal cause of xylem disruption during Ralstonia wilt.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2768-2773
Author(s):  
Yonglin He ◽  
Yixue Mo ◽  
Dehong Zheng ◽  
Qiqin Li ◽  
Wei Lin ◽  
...  

Bidens pilosa is an invasive weed that threatens the growth of crops and biodiversity in China. In 2017, suspected bacterial wilt of B. pilosa was discovered in Qinzhou and Beihai, Guangxi, China. A variety of weeds are considered as reservoirs harboring bacterial wilt pathogens, but most do not show obvious symptoms in the field. Identifying the classification status of the B. pilosa bacterial wilt pathogen and exploring its geographical origin might be helpful for clarifying the role of weeds in the circulation of the disease. Phylotyping, sequevar analysis, and cross inoculation of pathogens isolated from B. pilosa and nearby peanut (Arachis hypogaea), balsam gourd (Momordica charantia), and eucalyptus (Eucalyptus robusta) plants were carried out. Three isolates of B. pilosa (Bp01, Bp02, and Bp03) were identified as Ralstonia pseudosolanacearum, race 1, biovar 3, and phylotype I, and belonged to sequevars 17 and 44, and an unknown sequevar. The sequevars isolated from B. pilosa were not completely consistent with those of the nearby hosts, and the virulence of these isolates differed when cross inoculated. The Bp03 sequevar was different from peanut isolate sequevars in the same field and was not identical to any previously designated sequevars. The isolates from B. pilosa and other nearby hosts displayed low or no virulence toward their cross hosts (with wilt incidences less than 33.33%). An exception to this was the isolates from B. pilosa, which displayed high virulence toward eucalyptus (with a wilt incidence of 70.00 to 100.00%). This is the first report of different sequevars of R. pseudosolanacearum causing typical bacterial wilt symptoms in B. pilosa in the field.


2016 ◽  
Vol 37 (4) ◽  
pp. 1919
Author(s):  
Átilla Holanda de Albuquerque ◽  
Régis Siqueira de Castro Teixeira ◽  
Débora Nishi Machado ◽  
Elisângela De Souza Lopes ◽  
Ruben Horn Vasconcelos ◽  
...  

Several cases of animal and human salmonellosis caused by the Salmonella serotype Typhimurium have been reported. In animals, subclinical infection favors pathogen dissemination through feces. In this context, the domestic pigeon (Columba livia) with an asymptomatic condition may play an important role in the transmission of salmonellosis, through the elimination of contaminated feces in commercial aviaries or in poultry feed facilities, causing economic losses to the poultry industry and presenting a risk to public health. This study aimed to evaluate the mortality, clinical signs and the presence of Salmonella Typhimurium in the feces and organs of chicks previously inoculated with bacteria isolated from a pigeon. One-day-old chicks were distributed in two experimental groups (G1 and G2) of 32 birds each, and a control group of six birds. Two inocula of 0.4 and 0.7 mL with 105 and 106 colony forming units were used in G1 and G2 birds, respectively. At 1, 4, 7 and 14 days post-inoculation (dpi) fecal samples were pooled from each cage and individual cloacal swabs were collected. At 14 dpi, all chicks were euthanized and samples were collected from the liver, spleen, lung, cecum and intestine for microbiological analysis. Mortality was only observed among G2 birds (6.25%). Most birds presented clinical signs of diarrhea at 4 dpi and no symptom as observed at 14 dpi. The results from cloacal swabs demonstrated bacterial elimination in 68.8% and 53.1% of G2 and G1 birds, respectively at 1 dpi. Additionally, fecal samples had elevated bacterial shedding in all four periods of observation , with a higher excretion at 4 dpi (62.5%) for both groups. Among G2 birds, 74.2% were positive for the pathogen in the intestine; G1 birds presented the lowest rate of lung infection (29%), and both groups had more than 50% positivity for liver and caeca. The results revealed that infected chicks with a Salmonella Typhimurium strains isolated from pigeons may host the pathogen in several organs, and simultaneously present diarrheic disorders with significant levels of bacterial excretion in feces.


2021 ◽  
Author(s):  
April M MacIntyre ◽  
Valerian Meline ◽  
Zachary Gorman ◽  
Steven P Augustine ◽  
Carolyn J Dye ◽  
...  

Ralstonia solanacearum causes plant bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in host produced trehalose. Water stressed plants accumulate the disaccharide trehalose, which increases drought tolerance via abscisic acid (ABA) signaling networks. Because infected plants have reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. Transcriptomic responses of susceptible vs. resistant tomato plants to R. solanacearum infection revealed differential expression of drought-associated genes, including those involved in ABA and trehalose metabolism. ABA was enriched in xylem sap from R. solanacearum-infected plants. Treating roots with ABA lowered stomatal conductance and reduced R. solanacearum stem colonization. Treating roots with trehalose increased ABA in xylem sap and reduced plant water use by reducing stomatal conductance and temporarily improving water use efficiency. Further, trehalose-treated plants were more resistant to bacterial wilt disease. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent defense genes, increased xylem sap levels of SA and other antimicrobial compounds, and increased wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic resistance. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggests that that R. solanacearum-infected tomato plants produce more trehalose to improve water use efficiency and increase wilt disease resistance. In turn, R. solanacearum degrades trehalose as a counter-defense.


2020 ◽  
Author(s):  
Lida Hashemi ◽  
Ahmad Reza Golparvar ◽  
Mehdi Nasr Esfahani ◽  
Maryam Golabadi

AbstractPhytophthora melonis is the causal agent of damping-off or crown rot, one of the most destructive cucumber diseases that causes severe economic losses in Iran and some other parts of the world. Despite intense research efforts made in the past years, no permanent cure currently exists for this disease. With the aim to understand the molecular mechanisms of defense against P. melonis, root collars and leaves of four cucumber genotypes consisting of resistant Ramezz; moderately resistant Baby and very susceptible Mini 6-23 and Extrem, were monitored for quantitative gene expression analysis of five antifungal and/or anti-oomycete genes (CsWRKY20, CsLecRK6.1, PR3, PR1-1a and LOX1) at three points after inoculation with P. melonis. The gene expression analysis indicated that P. melonis strongly enhanced the expression of these genes after inoculation in both leaves and root collars. Further, not only the transcript levels of these genes were significantly higher in the resistant and moderately resistance genotypes, but also the time point of the highest relative expression ratio for the five genes was different in the four cucumber genotypes. CsWRKY20 and PR3 showed the maximum expression in Ramezz at 48 hours post inoculation (hpi) while CsLecRK6.1, and LOX1 showed the highest expression at 72 hpi. In addition, PR1-1a showed the maximum expression in the Baby at 72 hpi. Root collars responded faster than leaves and some responses were more strongly up-regulated in root collars than in leaves. The genes found to be involved in disease resistance in two different organs of cucumber after pathogen infection. The results suggest that increased expression of these genes led to activation of defense pathways and could be responsible for a reduced P. melonis colonization capacity in Ramezz and Baby. Overall, this work represents a valuable resource for future functional genomics studies to unravel the molecular mechanisms of C. sativus- P. melonis interaction.


2021 ◽  
Author(s):  
Brian Ingel ◽  
Denise Caldwell ◽  
Fiona Duong ◽  
Dilworth Y. Parkinson ◽  
Katherine A. McCulloh ◽  
...  

AbstractPlant pathogenic Ralstonia cause wilt diseases by colonizing xylem vessels and disrupting water transport. Due to the abundance of Ralstonia cells in vessels, the dogma is that bacterial biomass clogs vessels and reduces the flow of xylem sap. However, the physiological mechanism of xylem disruption during bacterial wilt disease is untested. Using a tomato and Ralstonia pseudosolanacearum GMI1000 model, we visualized and quantified the spatiotemporal dynamics of xylem disruption during bacterial wilt disease. First, we measured stomatal conductance of leaflets on mock-inoculated and wilt-symptomatic plants. Wilted leaflets had reduced stomatal conductance, as did turgid leaflets located on the same petiole as wilted leaflets. Next, we used X-ray microcomputed tomography (X-ray microCT) and light microscopy to differentiate between mechanisms of xylem disruption: blockage by bacterial biomass, blockage by vascular tyloses, or sap displacement by gas embolisms. We imaged stems on plants with intact roots and leaves to quantify embolized vessels. Embolized vessels were rare, but there was a slight trend of increased vessel embolisms in infected plants with low bacterial population sizes. To test the hypothesis that vessels are clogged during bacterial wilt, we imaged excised stems after allowing the sap to evaporate during a brief dehydration. Most xylem vessels in mock-infected plants emptied their contents after excision, but non-conductive clogged vessels were abundant in infected plants by 2 days post infection. At wilt onset when bacterial populations exceeded 5×108 cfu/g stem tissue, approximately half of the xylem vessels were clogged with electron-dense bacterial biomass. We found no evidence of tyloses in the X-ray microCT reconstructions or light microscopy on the preserved stems. Bacterial blockage of vessels appears to be the principal cause of vascular disruption during Ralstonia wilt.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 597
Author(s):  
Tina Oldham ◽  
Tim Dempster ◽  
Philip Crosbie ◽  
Mark Adams ◽  
Barbara Nowak

Amoebic gill disease (AGD), caused by the amoeba Neoparamoeba perurans, has led to considerable economic losses in every major Atlantic salmon producing country, and is increasing in frequency. The most serious infections occur during summer and autumn, when temperatures are high and poor dissolved oxygen (DO) conditions are most common. Here, we tested if exposure to cyclic hypoxia at DO saturations of 40–60% altered the course of infection with N. perurans compared to normoxic controls maintained at ≥90% DO saturation. Although hypoxia exposure did not increase initial susceptibility to N. perurans, it accelerated progression of the disease. By 7 days post-inoculation, amoeba counts estimated from qPCR analysis were 1.7 times higher in the hypoxic treatment than in normoxic controls, and cumulative mortalities were twice as high (16 ± 4% and 8 ± 2%), respectively. At 10 days post-inoculation, however, there were no differences between amoeba counts in the hypoxic and normoxic treatments, nor in the percentage of filaments with AGD lesions (control = 74 ± 2.8%, hypoxic = 69 ± 3.3%), or number of lamellae per lesion (control = 30 ± 0.9%, hypoxic = 27.9 ± 0.9%) as determined by histological examination. Cumulative mortalities at the termination of the experiment were similarly high in both treatments (hypoxic = 60 ± 2%, normoxic = 53 ± 11%). These results reveal that exposure to cyclic hypoxia in a diel pattern, equivalent to what salmon are exposed to in marine aquaculture cages, accelerated the progression of AGD in post-smolts.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 969-969
Author(s):  
T. L. Klass ◽  
M. M. Hayes ◽  
K. H. Seng ◽  
C. An ◽  
F. Rotondo ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (2) ◽  
pp. 364 ◽  
Author(s):  
G. F. Wang ◽  
H. Li ◽  
Y. Zhou ◽  
L. Y. Yang ◽  
Z. J. Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document