scholarly journals AaCycTL Regulates Cuticle and Trichome Development in Arabidopsis and Artemisia annua L.

2021 ◽  
Vol 12 ◽  
Author(s):  
Boran Dong ◽  
Xingxing Wang ◽  
Rui Jiang ◽  
Shiyuan Fang ◽  
Jinxing Li ◽  
...  

Artemisinin is an important drug for resistance against malaria. Artemisinin is derived from the glandular trichome of leaves, stems, or buds of the Chinese traditional herb Artemisia annua. Increasing the trichome density may enhance the artemisinin content of A. annua. It has been proven that cyclins are involved in the development of trichomes in tomato, Arabidopsis, and tobacco, but it is unclear whether the cyclins in A. annua influence trichome development. In this study, we showed that AaCycTL may regulate trichome development and affect the content of artemisinin. We cloned AaCycTL and found that it has the same expression files as the artemisinin biosynthesis pathway gene. We overexpressed AaCycTL in Arabidopsis, and the results indicated that AaCycTL changed the wax coverage on the surface of Arabidopsis leaves. The trichome density decreased as well. Using yeast two-hybrid and BiFC assays, we show that AaCycTL can interact with AaTAR1. Moreover, we overexpressed AaCycTL in A. annua and found that the expression of AaCycTL was increased to 82–195%. Changes in wax coverage on the surface of transgenic A. annua leaves or stems were found as well. We identified the expression of the artemisinin biosynthesis pathway genes ADS, CYP71AV1, and ALDH1 has decreased to 88–98%, 76–97%, and 82–97% in the AaCycTL-overexpressing A. annua lines, respectively. Furthermore, we found reduced the content of artemisinin. In agreement, overexpression of AaCycTL in A. annua or Arabidopsis may alter waxy loading, change the initiation of trichomes and downregulate trichome density. Altogether, AaCycTL mediates trichome development in A. annua and thus may serve to regulate trichome density and be used for artemisinin biosynthesis.

2020 ◽  
Vol 36 (3) ◽  
pp. 34-45
Author(s):  
T.Yu. Mitiuchkina ◽  
A.S. Pushin ◽  
A.K. Tzareva ◽  
A.M. Vainstein ◽  
S.V. Dolgov

Artemisinin-based medicines are the most effective treatment for malaria. To date, the wormwood plants (Artemisia annua L.) are the main source of artemisinin. Due to the limited nature of this source, considerable efforts are directed towards the development of methods for artemisinin production via heterologous expression systems. We used in this study agrobacterial transformation to transfer the genetic module of the artemisinin biosynthesis pathway into plants and then analyzed its transcription in a heterologous host. Tobacco plants were transformed with the artemisinin biosynthesis genes encoding amorpha-4,11-diene synthase, artemisin-aldehyde All(13) reductase, amorpha-4,11-diene monooxygenase, cytochrome P450 reductase from A. annua and yeast 3-hydroxy-3-methylglutaryl-coenzyme A reductase cloned in the pArtemC vector; farnesyl diphosphate synthase and aldehyde dehydrogenase were used to transform the plants as parts of vector p2356. As a result of transformation with the pArtemC and p2356 vectors, in twos transgenic lines with all target genes were obtained. Five genes of artemisinin biosynthesis and two genes of biosynthesis of its precursors were successfully transferred into the genome of transgenic tobacco lines as a result of the co-transformation with abovementioned vectors. Thus, the entire artemisinin biosynthesis pathway was first reconstructed in heterologous plants: the transcription of the artemisinin biosynthesis genes in the tobacco plants was shown via RT-PCR. The obtained results will be used in further research on expression systems for the production of artemisinin and other non-protein substances in heterologous host plants. artemisinin, malaria, metabolic engineering, tobacco, transgenic plants This work was supported by a Grant from the Russian Science Foundation no. 19-14-00190.


2014 ◽  
Vol 6 (3) ◽  
pp. 349-353 ◽  
Author(s):  
Alka Jagdish DANGASH ◽  
Neeta PANDYA ◽  
Ashish BHARILLYA ◽  
Ashween JHALA ◽  
Dharamchand JAIN

Artemisinin is a sesquiterpene lactone found in Artemisia annua having many medicinal properties. Therefore the factors affecting trichome initiation are important. In the present study, several strategies have been adapted to increase artemisinin production by treating them with nutrients, hormones and elicitors. Abscisic acid, Gibberellic acid (GA3), a combination of GA3+IAA (Gibberellic acid+indole acetic acid), Chitosan, Methyl jasmonate, Acetyl salicylic acid, Lead acetate, sodium chloride, and Nanozime were sprayed on plant at regular intervals. The glandular trichomes of leaves from Artemisia annua (Asteraceae) were examined by light and scanning electron microscopy and the percentage artemisnin content was analyzed by HPTLC. Maximum artemisinin content % and trichome index (0.128) was found when methy jasmonate was applied and minimum artemisinin content % and trichome index was reported in NaCl & acetyl salicylic acid.


2016 ◽  
Vol 214 (1) ◽  
pp. 304-316 ◽  
Author(s):  
Minghui Chen ◽  
Tingxiang Yan ◽  
Qian Shen ◽  
Xu Lu ◽  
Qifang Pan ◽  
...  

2020 ◽  
Vol 8 (6) ◽  
pp. 899
Author(s):  
Erzsébet Domokos ◽  
Béla Bíró-Janka ◽  
János Bálint ◽  
Katalin Molnár ◽  
Csaba Fazakas ◽  
...  

Artemisinin extracted from Artemisia annua has been used efficiently in malaria treatment since 2005. In this study, the variations in plant parameters (plant biomass, glandular trichome density, essential oil total chemical content, artemisinin production, and polyphenol oxidase (PPO) activity) were tested under different soil types (Luvisol, Gleysol, Anthrosol and sterile peat) and cultivation conditions (potted plants in semi-open field, and open field experiments) for plants inoculated with arbuscular mycorrhizal fungus (AMF) Rizophagus irregularis. Under semi-open field conditions, the AMF colonization of A. annua plant roots varied, and presented the highest percentage in Luvisol and sterile peat. The increase in the root colonization rate positively influenced some plant parameters (biomass, glandular trichome density, artemisinin concentration, essential oil quantity and composition), but no effects on PPO enzyme activity were detected. AMF fungus R. irregularis significantly increased the artemisinin content and essential oil yield of plants cultivated in Luvisol, Gleysol, Anthrosol and in peat. These soil types can offer appropriate conditions for A. annua cultivation and artemisinin production even on a smaller scale. Under open field conditions, low (about 5%) AMF colonization was observed. No differences in artemisin contents were detected, but essential oil yield significantly increased compared to control plants. AMF treatment increased beta-farnesene and germacrene D concentrations in Artemisia plants in the open field experiment.


2018 ◽  
Vol 1 (2) ◽  
pp. 5-21
Author(s):  
Orsolya Péterfi ◽  
Erzsébet Domokos

Abstract Artemisia annua is an important medical plant that produces artemisinin used for its antimalarial, antibacterial and antifungal effects in modern medicine. The high demand and low artemisinin content in plants (0.01-2 %) has led to studies about alternative methods to increase yield. Biofertilizers (beneficial microbes and/or biological products that colonize roots, improve plant nutrition and growth) have been reported affecting secondary metabolism and the production of active ingredients of herbs. The purpose of this paper is to draw attention to the current status of the research on mutualistic and endophytic microorganism of A. annua that have the potential to increase the quality and quantity of the crude drugs, derived from the herb. Scientific papers in this field focus on the effects on inoculation with different microorganisms (arbuscular micorrhizal fungi, endophytic bacteria and fungi) and the isolation of endophytes from A. annua. Bioinoculants can affect biomass, artemisinin and essential oil concentration, disease resistance, nutrient status, phosphatase activity, foliar glandular trichome density, leaf chlorophyll content, guaiacol peroxidase enzyme concentration, stomatal conductance and transpiration rate, and plant growth parameters (total weight, leaf yield, height, seed yield). The endophytes isolated from the plant are potential artemisinin content and plant stress resistance enhancers.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1194
Author(s):  
Limeng Zhou ◽  
Yingzhang Huang ◽  
Qi Wang ◽  
Dianjing Guo

Glandular trichome (GT) is the dominant site for artemisinin production in Artemisia annua. Several critical genes involved in artemisinin biosynthesis are specifically expressed in GT. However, the molecular mechanism of differential gene expression between GT and other tissue types remains elusive. Chromatin accessibility, defined as the degree to which nuclear molecules are able to interact with chromatin DNA, reflects gene expression capacity to a certain extent. Here, we investigated and compared the landscape of chromatin accessibility in Artemisia annua leaf and GT using the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) technique. We identified 5413 GT high accessible and 4045 GT low accessible regions, and these GT high accessible regions may contribute to GT-specific biological functions. Several GT-specific artemisinin biosynthetic genes, such as DBR2 and CYP71AV1, showed higher accessible regions in GT compared to that in leaf, implying that they might be regulated by chromatin accessibility. In addition, transcription factor binding motifs for MYB, bZIP, C2H2, and AP2 were overrepresented in the highly accessible chromatin regions associated with artemisinin biosynthetic genes in glandular trichomes. Finally, we proposed a working model illustrating the chromatin accessibility dynamics in regulating artemisinin biosynthetic gene expression. This work provided new insights into epigenetic regulation of gene expression in GT.


Author(s):  
Jiang He ◽  
Qian Gao ◽  
Tao Liao ◽  
Qing-Ping Zeng

Artemisinin is accumulated in wormwood (Artemisia annua) with uncertain ecological implications. Here, we suggest that artemisinin is generated in response to biotic/abiotic stress, during which dihydroartemisinic acid, a direct artemisinin precursor, quenches singlet oxygen (1O2), one kind of reactive oxygen species. Evidence supporting artemisinin as a sink of 1O2 emerges from that volatile isoprenoids protect plants from biotic/abiotic stress; biotic/abiotic stress induces artemisinin biosynthesis; and stress signaling pathways are involved in the biosynthesis of volatile isoprenoids among plants as well as the biosynthesis of artemisinin in A. annua. In this review, we address the ecological implication of glandular trichome-sequestered artemisinin as a sink sink of biotic/abiotic stress-triggered 1O2 , and also summarize the cumulating data on the transcriptomic and metabolic profiling of stress-enhanced artemisinin production upon eliciting 1O2 omission from chloroplasts and initiating retrograde 1O2 signaling from chloroplasts to nuclei.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tiantian Chen ◽  
Yongpeng Li ◽  
Lihui Xie ◽  
Xiaolong Hao ◽  
Hang Liu ◽  
...  

AbstractArtemisia annua, a traditional Chinese medicinal plant, remains the only plant source for artemisinin production, yet few genes have been identified to be involved in both the response to biotic stresses, such as pathogens, and artemisinin biosynthesis. Here, we isolated and identified the WRKY transcription factor (TF) AaWRKY17, which could significantly increase the artemisinin content and resistance to Pseudomonas syringae in A. annua. Yeast one-hybrid (Y1H), dual-luciferase (dual-LUC), and electrophoretic mobility shift assay (EMSA) results showed that AaWRKY17 directly bound to the W-box motifs in the promoter region of the artemisinin biosynthetic pathway gene amorpha-4,11-diene synthase (ADS) and promoted its expression. Real-time quantitative PCR (RT-qPCR) analysis revealed that the transcript levels of two defense marker genes, Pathogenesis-Related 5 (PR5) and NDR1/HIN1-LIKE 10 (NHL10), were greatly increased in AaWRKY17-overexpressing transgenic A. annua plants. Additionally, overexpression of AaWRKY17 in A. annua resulted in decreased susceptibility to P. syringae. These results indicated that AaWRKY17 acted as a positive regulator in response to P. syringae infection. Together, our findings demonstrated that the novel WRKY transcription factor AaWRKY17 could potentially be used in transgenic breeding to improve the content of artemisinin and pathogen tolerance in A. annua.


Sign in / Sign up

Export Citation Format

Share Document