scholarly journals The Relevance of Human Whistled Languages for the Analysis and Decoding of Dolphin Communication

2021 ◽  
Vol 12 ◽  
Author(s):  
Julien Meyer ◽  
Marcelo O. Magnasco ◽  
Diana Reiss

Humans use whistled communications, the most elaborate of which are commonly called “whistled languages” or “whistled speech” because they consist of a natural type of speech. The principle of whistled speech is straightforward: people articulate words while whistling and thereby transform spoken utterances by simplifying them, syllable by syllable, into whistled melodies. One of the most striking aspects of this whistled transformation of words is that it remains intelligible to trained speakers, despite a reduced acoustic channel to convey meaning. It constitutes a natural traditional means of telecommunication that permits spoken communication at long distances in a large diversity of languages of the world. Historically, birdsong has been used as a model for vocal learning and language. But conversely, human whistled languages can serve as a model for elucidating how information may be encoded in dolphin whistle communication. In this paper, we elucidate the reasons why human whistled speech and dolphin whistles are interesting to compare. Both are characterized by similar acoustic parameters and serve a common purpose of long distance communication in natural surroundings in two large brained social species. Moreover, their differences – e.g., how they are produced, the dynamics of the whistles, and the types of information they convey – are not barriers to such a comparison. On the contrary, by exploring the structure and attributes found across human whistle languages, we highlight that they can provide an important model as to how complex information is and can be encoded in what appears at first sight to be simple whistled modulated signals. Observing details, such as processes of segmentation and coarticulation, in whistled speech can serve to advance and inform the development of new approaches for the analysis of whistle repertoires of dolphins, and eventually other species. Human whistled languages and dolphin whistles could serve as complementary test benches for the development of new methodologies and algorithms for decoding whistled communication signals by providing new perspectives on how information may be encoded structurally and organizationally.

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Filip Rozpędek ◽  
Kyungjoo Noh ◽  
Qian Xu ◽  
Saikat Guha ◽  
Liang Jiang

AbstractWe propose an architecture of quantum-error-correction-based quantum repeaters that combines techniques used in discrete- and continuous-variable quantum information. Specifically, we propose to encode the transmitted qubits in a concatenated code consisting of two levels. On the first level we use a continuous-variable GKP code encoding the qubit in a single bosonic mode. On the second level we use a small discrete-variable code. Such an architecture has two important features. Firstly, errors on each of the two levels are corrected in repeaters of two different types. This enables for achieving performance needed in practical scenarios with a reduced cost with respect to an architecture for which all repeaters are the same. Secondly, the use of continuous-variable GKP code on the lower level generates additional analog information which enhances the error-correcting capabilities of the second-level code such that long-distance communication becomes possible with encodings consisting of only four or seven optical modes.


1999 ◽  
Vol 09 (01n02) ◽  
pp. 125-132
Author(s):  
GEUN-TAEK RYU ◽  
DAE-SUNG KIM ◽  
DAE-YOUNG LEE ◽  
SUNG-HWAN HAN ◽  
HYEON-DEOK BAE

The choice of the adaptive gain is important to the performance of LMS-based adaptive filters. Depending on application areas, the realization structure of the filters is also important. This letter presents an adaptive lattice algorithm which adjusts the adaptive gain of LMS using fuzzy if-then rules determined by matching input and output variables during adaptation procedure. In each lattice filter stage, this filter adjusts the adaptive gain as the output of the fuzzy logic which has two input variables, normalized squared forward prediction error and one step previous adaptive gain. The proposed algorithm is applied to echo canceling problem of long distance communication channel. The simulation results are compared with NLMS on TDL and lattice structures.


The feasibility and utility of long-distance communication via Earth-orbiting satellites has been demonstrated during recent years and it is appropriate therefore to focus attention on the more important scientific studies and technical developments that will be needed if full use is to be made of this valuable mode of communication in the future. The early communication satellites (the Telstar and Relay series) were pioneers in a relatively unknown propagation environment. The satellites themselves were conceptually simple and the communication equipment consisted essentially of a frequency-changing transponder with an r. f. power output of a few watts and a bandwidth some tens of megahertz. Carrier frequencies in the range 2 to 6 GHz were employed; typically either 2 or 6 GHz was used for transmission and 4 GHz for reception at the Earth station. To obtain an adequate signal/noise ratio at the output of the Earth station receiver, frequency modulation was employed, the frequency deviations being greater than those used on terrestrial microwave links. Launcher limitations and other factors meant that the satellites had to be placed in inclined elliptical orbits (see figure 1) with maximum heights of only a few thousand miles. Nevertheless, these satellites demonstrated that some hundreds of frequency-division multiplex telephony circuits, or a television channel, could be achieved with generally satisfactory quality of transmission. It is to be noted, however, that the satellite transponders accommodated only one, or at the most two, r. f. carriers at any time, and that the transmission performance was at times marginal due to limitations of the satellite effective radiated power. Furthermore, these relatively low orbit satellites provided communication in periods of generally less than an hour at a time and required continuous tracking by the Earth station aerials, due to movement of the satellites relative to the Earth.


2017 ◽  
Vol 2 (3) ◽  
pp. 302-308 ◽  
Author(s):  
Salim Qadir Mohammed ◽  
Asaad M. Asaad M. Al-Hindawi

Fiber optics is an important part in the telecommunication infrastructure. Large bandwidth and low attenuation are features for the fiber optics to provide gigabit transmission. Nowadays, fiber optics are used widely in long distance communication and networking to provide the required information traffic for multimedia applications. In this paper, the optical fiber structure and the operation mechanism for multimode and single modes are analyzed. The design parameters such as core radius, numerical aperture, attenuation, dispersion and information capacity for step index and graded index fibers are studied, calculated and compared for different light sources.


2015 ◽  
Vol 11 (1) ◽  
pp. 78
Author(s):  
Uzma Septima ◽  
Lince Markis

Base Transceiver Station is a device used to connect mobile-phone or smartphone in order to make long-distance communication, although in doing the movement or in transit from one place to another. Installation Base Transceiver Station for Network Node B At the operator Hutchison 3 Indonesia is done to make the operator Hutchison 3 Indonesia signal received by the phone for the better and not dashed when the user performs long-distance communication links with conditions in performing the movement or in the course of one place to another. Methods beginning the process of physical installation of Base Transceiver Station for Node B network in the operator Hutchison 3 Indonesia and order all the Base Transceiver Station can live well after the battery is connected to a rectifier and the required accuracy when performing the installation Base Transceiver Station. Furthermore, the integration process or Commissioning of the Base Transceiver Station for Node B network operator Hutchison 3 Indonesia on this in order to actively and After Commissioning obtained Receive Signal Level sectoral antennas of -59 dBm which can emit a signal as far as 7 km to 8 km , after the new process or Pointing connection between this new Base Transceiver Station Base Transceiver Station with preexisting and Pointing between Siak new Base Transceiver Station Base Transceiver Station Perawang with Perawang Students who have a distance of 5 km Receive Signal level of -32.4 dBm made in accordance with a budget link provided operator Hutchison 3 Indonesia is -30 dBm to -40 dBm.


Sign in / Sign up

Export Citation Format

Share Document