scholarly journals Predictive Processing in Poetic Language: Event-Related Potentials Data on Rhythmic Omissions in Metered Speech

2022 ◽  
Vol 12 ◽  
Author(s):  
Karen Henrich ◽  
Mathias Scharinger

Predictions during language comprehension are currently discussed from many points of view. One area where predictive processing may play a particular role concerns poetic language that is regularized by meter and rhyme, thus allowing strong predictions regarding the timing and stress of individual syllables. While there is growing evidence that these prosodic regularities influence language processing, less is known about the potential influence of prosodic preferences (binary, strong-weak patterns) on neurophysiological processes. To this end, the present electroencephalogram (EEG) study examined whether the predictability of strong and weak syllables within metered speech would differ as a function of meter (trochee vs. iamb). Strong, i.e., accented positions within a foot should be more predictable than weak, i.e., unaccented positions. Our focus was on disyllabic pseudowords that solely differed between trochaic and iambic structure, with trochees providing the preferred foot in German. Methodologically, we focused on the omission Mismatch Negativity (oMMN) that is elicited when an anticipated auditory stimulus is omitted. The resulting electrophysiological brain response is particularly interesting because its elicitation does not depend on a physical stimulus. Omissions in deviant position of a passive oddball paradigm occurred at either first- or second-syllable position of the aforementioned pseudowords, resulting in a 2-by-2 design with the factors foot type and omission position. Analyses focused on the mean oMMN amplitude and latency differences across the four conditions. The result pattern was characterized by an interaction of the effects of foot type and omission position for both amplitudes and latencies. In first position, omissions resulted in larger and earlier oMMNs for trochees than for iambs. In second position, omissions resulted in larger oMMNs for iambs than for trochees, but the oMMN latency did not differ. The results suggest that omissions, particularly in initial position, are modulated by a trochaic preference in German. The preferred strong-weak pattern may have strengthened the prosodic prediction, especially for matching, trochaic stimuli, such that the violation of this prediction led to an earlier and stronger prediction error. Altogether, predictive processing seems to play a particular role in metered speech, especially if the meter is based on the preferred foot type.

2012 ◽  
Vol 25 (0) ◽  
pp. 192
Author(s):  
Davide Bottari ◽  
Sophie Rohlf ◽  
Marlene Hense ◽  
Boukje Habets ◽  
Brigitte Roeder

Event-related potentials (ERP) to the second stimulus of a pair are known to be reduced in amplitude. The magnitude of this ‘refractoriness’ is modulated by both the interstimulus interval and the similarity between the two stimuli. Intramodal refractoriness is interpreted as an index of a temporary decrement in neural responsiveness. So, cross-modal refractoriness might be an indicator of shared neural generators between modalities. We analysed oscillatory neuronal activity while participants were engaged in an oddball paradigm with auditory (4000 Hz, 50 ms-long, 90 db, bilateral) and tactile stimuli (50 ms-long, 125 Hz-vibrations, index fingers) presented in a random order with an ISI of either 1000 or 2000 ms. Participants were required to detect rare tactile (middle fingers) and auditory deviants (600 Hz). A time–frequency analysis of the brain response to the second stimulus of each pair (T-T, A-A, T-A and A-T) contrasting Short and Long ISIs revealed a reduced refractory effect after Long ISI with respect to Short ISI, in all pairs (both intramodal and cross-modal). This emerged as a broadly distributed increase of evoked theta activity (3–7 Hz, 100–500 ms). Only in intramodal tactile pairs and cross-modal tactile-auditory pairs we also observed that Long ISI with respect to Short ISI determined a decrease of induced alpha (8–12 Hz, 200–700 ms), a typical sign of enhanced neural excitability and thus decreased refractoriness. These data suggest that somatosensory and auditory cortices display different neural markers of refractoriness and that the auditory cortex might have a stronger low level degree of influence on the tactile cortex than vice-versa.


2021 ◽  
Vol 11 ◽  
Author(s):  
Entao Zhang ◽  
Xueling Ma ◽  
Ruiwen Tao ◽  
Tao Suo ◽  
Huang Gu ◽  
...  

With the help of event-related potentials (ERPs), the present study used an oddball paradigm to investigate how both individual and target power modulate neural responses to angry expressions. Specifically, participants were assigned into a high-power or low-power condition. Then, they were asked to detect a deviant angry expression from a high-power or low-power target among a series of neutral expressions, while behavioral responses and electroencephalogram (EEG) were recorded. The behavioral results showed that high-power individuals responded faster to detect angry expressions than low-power individuals. The ERP analysis showed that high-power individuals showed larger P3 amplitudes in response to angry expressions than low-power individuals did. Target power increased the amplitudes of the P1, VPP, N3, and P3 in response to angry expressions did, but decreased the amplitudes of the N1 and N170 in response to angry expressions. The present study extended previous studies by showing that having more power could enhance individuals’ neural responses to angry expressions in the late-stage processes, and individuals could show stronger neural responses to angry expressions from high-power persons in both the early‐ and late-stage processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Agnieszka Otwinowska ◽  
Marta Marecka ◽  
Alba Casado ◽  
Joanna Durlik ◽  
Jakub Szewczyk ◽  
...  

Multi-word expressions (MWEs) are fixed, conventional phrases often used by native speakers of a given language (L1). The type of MWEs investigated in this study were collocations. For bilinguals who have intensive contact with the second language (L2), collocational patterns can be transferred from the L2 to the L1 as a result of cross-linguistic influence (CLI). For example, bilingual migrants can accept collocations from their L2 translated to their L1 as correct. In this study, we asked whether such CLI is possible in native speakers living in the L1 environment and whether it depends on their L2 English proficiency. To this end, we created three lists of expressions in Polish: (1) well-formed Polish verb-noun collocations (e.g., ma sens – ∗has sense), (2) collocational calques from English (loan translations), where the English verb was replaced by a Polish translation equivalent (e.g., ∗robi sens – makes sense), and, as a reference (3) absurd verb-noun expression, where the verb did not collocate with the noun (e.g., ∗zjada sens – ∗eats sense). We embedded the three types of collocations in sentences and presented them to L1 Polish participants of varying L2 English proficiency in two experiments. We investigated whether L2 calques would (1) be explicitly judged as non-native in the L1; (2) whether they would evoke differential brain response than native L1 Polish equivalents in the event-related potentials (ERPs). We also explored whether the sensitivity to CLI in calques depended on participants’ level of proficiency in L2 English. The results indicated that native speakers of Polish assessed the calques from English as less acceptable than the correct Polish collocations. Still, there was no difference in online processing of correct and calques collocations as measured by the ERPs. This suggests a dissociation between explicit offline judgments and indices of online language processing. Interestingly, English L2 proficiency did not modulate these effects. The results indicate that the influence of English on Polish is so pervasive that collocational calques from this language are likely to become accepted and used by Poles.


Author(s):  
Justine Niemczyk ◽  
Monika Equit ◽  
Katja Rieck ◽  
Mathias Rubly ◽  
Catharina Wagner ◽  
...  

Abstract. Objective: Daytime urinary incontinence (DUI) is common in childhood. The aim of the study was to neurophysiologically analyse the central emotion processing in children with DUI. Method: In 20 children with DUI (mean age 8.1 years, 55 % male) and 20 controls (mean age 9.1 years, 75 % male) visual event-related potentials (ERPs) were recorded after presenting emotionally valent (80 neutral, 40 positive, and 40 negative) pictures from the International Affective Picture System (IAPS) as an oddball-paradigm. All children received a full organic and psychiatric assessment. Results: Children with DUI did not differ significantly from controls regarding responses to emotional pictures in the frontal, central, and parietal regions and in the time intervals 250–450 ms, 450–650 ms, and 650–850 ms after stimulus onset. The patient group had more psychological symptoms and psychiatric comorbidities than the control group. Conclusions: EEG responses to emotional stimuli are not altered in children with DUI. Central emotion processing does not play a major role in DUI. Further research, including a larger sample size, a more homogeneous patient group (regarding subtype of DUI) or brain imaging techniques, could reveal more about the central processing in DUI.


2014 ◽  
Vol 33 (10) ◽  
pp. 723-727
Author(s):  
M. Westermann ◽  
I. W. Husstedt ◽  
A. Okegwo ◽  
S. Evers

SummaryEvent-related potentials (ERP) are regarded as age dependent. However, it is not known whether this is an intrinsic property of ERP or an extrinsic factor. We designed a setting in which ERP were evoked using a modified oddball paradigm with highly differentiable and detectable target and non-target stimuli. A total of 98 probands were enrolled in this study. We evaluated the latency and amplitude of the P3 component of visually evoked ERP. The mean P3 latency was 294 ± 28 ms and was not related to age (r = –0.089; p = 0.382; Spearman-rank-correlation). The P3 amplitude was related to age in the total sample (r = –0.323; p = 0.001; Spearmanrank-correlation) but not in the probands under the age of 60 years. There were no significant differences regarding sex. Our findings suggest that ERP are not age dependent if highly differentiable and detectable stimuli are used. This should be considered when normal values of ERP are created for clinical use.


2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
John Stein

(1) Background—the magnocellular hypothesis proposes that impaired development of the visual timing systems in the brain that are mediated by magnocellular (M-) neurons is a major cause of dyslexia. Their function can now be assessed quite easily by analysing averaged visually evoked event-related potentials (VERPs) in the electroencephalogram (EEG). Such analysis might provide a useful, objective biomarker for diagnosing developmental dyslexia. (2) Methods—in adult dyslexics and normally reading controls, we recorded steady state VERPs, and their frequency content was computed using the fast Fourier transform. The visual stimulus was a black and white checker board whose checks reversed contrast every 100 ms. M- cells respond to this stimulus mainly at 10 Hz, whereas parvocells (P-) do so at 5 Hz. Left and right visual hemifields were stimulated separately in some subjects to see if there were latency differences between the M- inputs to the right vs. left hemispheres, and these were compared with the subjects’ handedness. (3) Results—Controls demonstrated a larger 10 Hz than 5 Hz fundamental peak in the spectra, whereas the dyslexics showed the reverse pattern. The ratio of subjects’ 10/5 Hz amplitudes predicted their reading ability. The latency of the 10 Hz peak was shorter during left than during right hemifield stimulation, and shorter in controls than in dyslexics. The latter correlated weakly with their handedness. (4) Conclusion—Steady state visual ERPs may conveniently be used to identify developmental dyslexia. However, due to the limited numbers of subjects in each sub-study, these results need confirmation.


2010 ◽  
Vol 22 (12) ◽  
pp. 2728-2744 ◽  
Author(s):  
Eric Pakulak ◽  
Helen J. Neville

Although anecdotally there appear to be differences in the way native speakers use and comprehend their native language, most empirical investigations of language processing study university students and none have studied differences in language proficiency, which may be independent of resource limitations such as working memory span. We examined differences in language proficiency in adult monolingual native speakers of English using an ERP paradigm. ERPs were recorded to insertion phrase structure violations in naturally spoken English sentences. Participants recruited from a wide spectrum of society were given standardized measures of English language proficiency, and two complementary ERP analyses were performed. In between-groups analyses, participants were divided on the basis of standardized proficiency scores into lower proficiency and higher proficiency groups. Compared with lower proficiency participants, higher proficiency participants showed an early anterior negativity that was more focal, both spatially and temporally, and a larger and more widely distributed positivity (P600) to violations. In correlational analyses, we used a wide spectrum of proficiency scores to examine the degree to which individual proficiency scores correlated with individual neural responses to syntactic violations in regions and time windows identified in the between-groups analyses. This approach also used partial correlation analyses to control for possible confounding variables. These analyses provided evidence for the effects of proficiency that converged with the between-groups analyses. These results suggest that adult monolingual native speakers of English who vary in language proficiency differ in the recruitment of syntactic processes that are hypothesized to be at least in part automatic as well as of those thought to be more controlled. These results also suggest that to fully characterize neural organization for language in native speakers it is necessary to include participants of varying proficiency.


2014 ◽  
Vol 19 (1) ◽  
pp. 1-18 ◽  
Author(s):  
EDITH KAAN ◽  
JOSEPH KIRKHAM ◽  
FRANK WIJNEN

According to recent views of L2-sentence processing, L2-speakers do not predict upcoming information to the same extent as do native speakers. To investigate L2-speakers’ predictive use and integration of syntactic information across clauses, we recorded event-related potentials (ERPs) from advanced L2-learners and native speakers while they read sentences in which the syntactic context did or did not allow noun-ellipsis (Lau, E., Stroud, C., Plesch, S., & Phillips, C. (2006). The role of structural prediction in rapid syntactic analysis. Brain and Language, 98, 74–88.) Both native and L2-speakers were sensitive to the context when integrating words after the potential ellipsis-site. However, native, but not L2-speakers, anticipated the ellipsis, as suggested by an ERP difference between elliptical and non-elliptical contexts preceding the potential ellipsis-site. In addition, L2-learners displayed a late frontal negativity for ungrammaticalities, suggesting differences in repair strategies or resources compared with native speakers.


Sign in / Sign up

Export Citation Format

Share Document