scholarly journals Analytical Performance of Quantitative DiaSorin Liaison SARS-COV-2 Antigen Test for the Asymptomatic Population

2022 ◽  
Vol 9 ◽  
Author(s):  
Gema Fernández-Rivas ◽  
Jaume Barallat ◽  
Victoria Gonzalez ◽  
Silvia Martinez ◽  
Antoni E. Bordoy ◽  
...  

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antigen (Ag) tests have been widely employed to identify patients for a rapid diagnosis and pandemic control. Rapid lateral-flow techniques are currently the most used, but automated technologies have emerged as another viable alternative to molecular methods. We aimed to evaluate the analytical performance of the DiaSorin Liaison SARS-CoV-2 Ag test in asymptomatic population and close contacts, for its use as a tool in pandemic control efforts.Material and Methods: A retrospective study was conducted. A total of 861 samples were included, 291 (34%) were positive for SARS-CoV-2 with cycle threshold (Ct) <40, and 570 (66%) were negative.Results: A strong correlation was observed between reverse transcriptase-PCR (RT-PCR) Ct and Ag 50% Tissue Culture Infectious Dose per milliliter (TCID50/ml; r = 0.6486; p < 0.0001) and all RT-PCR negative samples tested negative for the 200 TCID50/ml SARS-Cov-2 Ag cutoff, i.e., a specificity of 100% was reached (95% CI: 99.4–100.0%). Samples with <25 Ct and/or >106 extrapolated copies/ml were reached a sensitivity of 100% (95% IC 97.0–100.0%). For intermediate viral loads (>105 extrapolated copies/ml or <30 Ct), the sensitivity value still exceeded 80%. As with other Ag methods, samples between 30 and 40 Ct could not be detected with a reliable sensitivity.Conclusions: The LIAISON® SARS-CoV-2 Ag assay displays an acceptable sensitivity and a very high specificity that is useful for detecting the presence of SARS-CoV-2 in nasal swabs (NPS) of asymptomatic population or to regular monitoring of risk groups in controlled settings. Additionally, the flexibility in processing different samples and in the sampling preparation process makes this test an option for its use in high throughput laboratories. Automated tests may facilitate result reporting and yield consistent data, while avoiding some of the pitfalls of rapid lateral-flow techniques, such as observer variability.

Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1067
Author(s):  
Anwar M. Hashem ◽  
Rowa Y. Alhabbab ◽  
Abdullah Algaissi ◽  
Mohamed A. Alfaleh ◽  
Sharif Hala ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally. Although several rapid commercial serological assays have been developed, little is known about their performance and accuracy in detecting SARS-CoV-2-specific antibodies in COVID-19 patient samples. Here, we have evaluated the performance of seven commercially available rapid lateral flow immunoassays (LFIA) obtained from different manufacturers, and compared them to in-house developed and validated ELISA assays for the detection of SARS-CoV-2-specific IgM and IgG antibodies in RT-PCR-confirmed COVID-19 patients. While all evaluated LFIA assays showed high specificity, our data showed a significant variation in sensitivity of these assays, which ranged from 0% to 54% for samples collected early during infection (3–7 days post symptoms onset) and from 54% to 88% for samples collected at later time points during infection (8–27 days post symptoms onset). Therefore, we recommend prior evaluation and validation of these assays before being routinely used to detect IgM and IgG in COVID-19 patients. Moreover, our findings suggest the use of LFIA assays in combination with other standard methods, and not as an alternative.


2020 ◽  
Author(s):  
Won Lee ◽  
Steven Straube ◽  
Ryan Sincic ◽  
Jeanne A. Noble ◽  
Juan Carlos Montoy ◽  
...  

ABSTRACTIntroductionThe ongoing SARS-CoV-2 pandemic has spurred the development of numerous point of care (PoC) immunoassays. Assessments of performance of available kits are necessary to determine their clinical utility. Previous studies have mostly performed these assessments in a laboratory setting, which raises concerns of translating findings for PoC use. The aim of this study was to assess the performance of a lateral flow immunoassay for the detection of SARS-CoV-2 antibodies using samples collected at PoC.MethodOne lateral flow immunoassay (Humasis® COVID-19 IgG/IgM) was tested. In total, 50 PCR RT-PCR positive and 52 RT-PCR negative samples were collected at PoC. Fifty serum specimens from Dec 2018 to Feb 2019 were used as controls for specificity. Serum samples collected between Dec 2019 to Feb 2020 were used as additional comparators. Clinical data including symptom onset date was collected from patient history and the medical record.ResultsThe overall sensitivity for the kit was 74% (95% CI: 59.7% -85.4%). The sensitivity for IgM and IgG detection >14 days after date of onset was 88% (95% CI: 68.8% -97.5%) and 84% (95% CI: 63.9% – 95.5%), with a negative predictive value (NPV) of 94% for IgM (95% CI: 83.5% - 98.8%) and 93% for IgG (95% CI: 81.8% - 97.9%). The overall specificity was 94% (95% CI: 83.5% - 98.8%). The Immunoglobulin specific specificity was 94% for IgM (95% CI: 83.5% - 98.8%) and 98% for IgG (95% CI: 89.4% - 100.0%), with a positive predictive value (PPV) of 88% for IgM (95% CI: 68.8% - 97.5%) and 95% for IgG (95% CI: 77.2% - 99.9%) respectively for samples collected from patients >14 days after date of onset. Specimen collected during early phase of COVID-19 pandemic (Dec 2019 to Feb 2020) showed 11.8% antibody positivity, and 11.3% of PCR-negative patients demonstrated antibody positivity.DiscussionHumasis® COVID-19 IgG/IgM LFA demonstrates greater than 90% PPV and NPV for samples collected 14 days after the onset of symptoms using samples collected at PoC. While not practical for the diagnosis of acute infection, the use of the lateral flow assays with high specificity may have utility for determining seroprevalence or seroconversion in longitudinal studies.


2020 ◽  
Vol 71 (15) ◽  
pp. 793-798 ◽  
Author(s):  
Fengting Yu ◽  
Liting Yan ◽  
Nan Wang ◽  
Siyuan Yang ◽  
Linghang Wang ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) has become a public health emergency. The widely used reverse transcription–polymerase chain reaction (RT-PCR) method has limitations for clinical diagnosis and treatment. Methods A total of 323 samples from 76 COVID-19–confirmed patients were analyzed by droplet digital PCR (ddPCR) and RT-PCR based 2 target genes (ORF1ab and N). Nasal swabs, throat swabs, sputum, blood, and urine were collected. Clinical and imaging data were obtained for clinical staging. Results In 95 samples that tested positive by both methods, the cycle threshold (Ct) of RT-PCR was highly correlated with the copy number of ddPCR (ORF1ab gene, R2 = 0.83; N gene, R2 = 0.87). Four (4/161) negative and 41 (41/67) single-gene positive samples tested by RT-PCR were positive according to ddPCR with viral loads ranging from 11.1 to 123.2 copies/test. The viral load of respiratory samples was then compared and the average viral load in sputum (17 429 ± 6920 copies/test) was found to be significantly higher than in throat swabs (2552 ± 1965 copies/test, P < .001) and nasal swabs (651 ± 501 copies/test, P < .001). Furthermore, the viral loads in the early and progressive stages were significantly higher than that in the recovery stage (46 800 ± 17 272 vs 1252 ± 1027, P < .001) analyzed by sputum samples. Conclusions Quantitative monitoring of viral load in lower respiratory tract samples helps to evaluate disease progression, especially in cases of low viral load.


2015 ◽  
Vol 2 (4) ◽  
Author(s):  
Liesbeth Van Wesenbeeck ◽  
David D'Haese ◽  
Jeroen Tolboom ◽  
Hanne Meeuws ◽  
Dominic E. Dwyer ◽  
...  

Abstract Background.  Efficacy endpoints in influenza clinical trials may include clinical symptoms and virological measurements, although virology cannot serve as the primary endpoint. We investigated the relationship between influenza A RNA copy number and quantity of infectious viruses in hospitalized influenza patients. Methods.  One hundred fifty influenza-infected, hospitalized patients were included in this prospective cohort study spanning the 2012–2013 influenza season. Daily nasopharyngeal samples were collected during hospitalization, and influenza A RNA copy number and infectious viral titer were monitored. Results.  The decay rate for 50% tissue culture infectious dose (TCID50) was 0.51 ± 0.14 log10 TCID50/mL per day, whereas the RNA copy number decreased at a rate of 0.41 ± 0.04 log10 copies/mL per day (n = 433). The log ratio of the RNA copy number to the infectious viral titer within patient changes significantly with −0.25 ± 0.09 units per day (P = .0069). For a 12-day observation period, the decay corresponds to a decline of this ratio of 3 log influenza RNA copies. Conclusions.  Influenza RNA copy number in nasal swabs is co-linear with culture, although the rate of decay of cell culture-based viral titers was faster than that observed with molecular methods. The study documented a clear decreasing log ratio of the RNA copy number to the infectious viral titer of the patients over time.


Author(s):  
Thomas HC Sit ◽  
Christopher J Brackman ◽  
Sin Ming Ip ◽  
Karina WS Tam ◽  
Pierra YT Law ◽  
...  

Abstract SARS-CoV-2 emerged in Wuhan in December 2019 and has caused the pandemic respiratory disease, COVID-19. Following what is presumed to be an initial zoonotic transmission event, the virus is now spreading efficient in humans. Very little is known about the susceptibility of domestic mammals kept as pets to this virus. Samples were collected over a 13-day period from a 17 year-old neutered male Pomeranian in Hong Kong SA that was taken into isolation after two members of the household tested positive for the virus. Nasal swabs were consistently positive on the five occasions the dog was tested using quantitative RT- PCR with viral loads between 7.5xE2 to 2.6 x10E4 RNA copies per mL of sample. The dog remained asymptomatic. Cultures attempted on three RT-PCR positive nasal samples were negative. Gene sequences from samples from two household members were identical. The viral sequence from the dog differed at three nucleotide positions; two of these resulted in amino acid changes but their significance is yet to be determined. Seroconversion was not detected but this was expected given the asymptomatic infection and low virus load. The evidence suggests that this is an instance of human-to-animal transmission of SARS-COV-2. It is likely that we could see similar events in other infected households. We do not have information yet on whether this virus can cause illness in dogs but no specific signs were seen in this dog. Whether infected dogs could transmit the virus to other animals or back to humans remains unknown. In this case it did not appear to have occurred.


2020 ◽  
Author(s):  
Mustafa Fatih Abasiyanik ◽  
Blake Flood ◽  
Jing Lin ◽  
Sefika Ozcan ◽  
Sherin J Rouhani ◽  
...  

AbstractSaliva has significant advantages as a test medium for detection of SARS-CoV-2 infection in patients, such as ease of collection, minimal requirement of supplies and trained personnel, and safety. Comprehensive validation in a large cohort of prospectively collected specimens with unknown SARS-CoV-2 status should be performed to evaluate the potential and limitations of saliva-based testing. We developed a saliva-based testing pipeline for detection of SARS-CoV-2 nucleic acids using real-time reverse transcription PCR (RT-PCR) and droplet digital PCR (ddPCR) readouts, and measured samples from 137 outpatients tested at a curbside testing facility and 29 inpatients hospitalized for COVID-19. These measurements were compared to the nasal swab results for each patient performed by a certified microbiology laboratory. We found that our saliva testing positively detects 100% (RT-PCR) and 93.75% (ddPCR) of curbside patients that were identified as SARS-CoV-2 positive by the Emergency Use Authorization (EUA) certified nasal swab testing assay. Quantification of viral loads by ddPCR revealed an extremely wide range, with 1 million-fold difference between individual patients. Our results demonstrate for both community screening and hospital settings that saliva testing reliability is on par with that of the nasal swabs in detecting infected cases, and has potential for higher sensitivity when combined with ddPCR in detecting low-abundance viral loads that evade traditional testing methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mustafa Fatih Abasiyanik ◽  
Blake Flood ◽  
Jing Lin ◽  
Sefika Ozcan ◽  
Sherin J. Rouhani ◽  
...  

AbstractSaliva has significant advantages as a test medium for detection of SARS-CoV-2 infection in patients, such as ease of collection, minimal requirement of supplies and trained personnel, and safety. Comprehensive validation in a large cohort of prospectively collected specimens with unknown SARS-CoV-2 status should be performed to evaluate the potential and limitations of saliva-based testing. We developed a saliva-based testing pipeline for detection of SARS-CoV-2 nucleic acids using real-time reverse transcription PCR (RT-PCR) and droplet digital PCR (ddPCR) readouts, and measured samples from 137 outpatients tested at a curbside testing facility and 29 inpatients hospitalized for COVID-19. These measurements were compared to the nasal swab results for each patient performed by a certified microbiology laboratory. We found that our saliva testing positively detects 100% (RT-PCR) and 93.75% (ddPCR) of curbside patients that were identified as SARS-CoV-2 positive by the Emergency Use Authorization (EUA) certified nasal swab testing assay. Quantification of viral loads by ddPCR revealed an extremely wide range, with 1 million-fold difference between individual patients. Our results demonstrate for both community screening and hospital settings that saliva testing reliability is on par with that of the nasal swabs in detecting infected cases, and has potential for higher sensitivity when combined with ddPCR in detecting low-abundance viral loads that evade traditional testing methods.


2021 ◽  
Author(s):  
Andrew Taylor ◽  
Ronan Calvez ◽  
Mark Atkins ◽  
Colin G Fink

AbstractIn late 2019, SARS-CoV-2 emerged in the Wuhan province of China. Rapid global spread led to the Covid-19 pandemic. Rapid and accurate detection of SARS-CoV-2 has become a vitally important tool in controlling the spread of the virus. Lateral flow devices (LFDs) offer the potential advantage of speed and on-site testing. The sensitivity of these devices compared to the gold standard RT-PCR has been questioned. We compared the performance of the Innova lateral flow kit, recommended by the UK government, with our rapid in-house RT-PCR protocol using stored positive patient samples. The LFD device was found to be 6,000-10,000 times less sensitive than RT-PCR for the detection of SARS-CoV-2. Overall, the LFD detected 46.2% of the positives detected by RT-PCR. 50% of the LFD results were observed to be weak positives, only visible after careful examination by experienced laboratory staff. At lower viral loads, such as 10,000-100,000 RNA copies/ml, the LFD detected 22.2% of positives. In addition, two strong positives (3 and 1.5 million RNA copies/ml) were not detected by the LFD. The argument for use of LFD kits, despite their lack of sensitivity, is that they detect infectious virus and hence contagious individuals. At present, there is a lack of scientific evidence supporting this claim. The LFD used in the UK fails to identify individuals with considerable viral loads and has been subject to a class I recall by the US FDA but is still approved and recommended for use by the UK government. We believe that using LFD testing for assessing SARS-CoV-2 infection risk is a strategy which has risks that outweigh any benefits.


2020 ◽  
Vol 7 (2) ◽  
pp. eabe3703
Author(s):  
Bo Ning ◽  
Tao Yu ◽  
Shengwei Zhang ◽  
Zhen Huang ◽  
Di Tian ◽  
...  

Point-of-care COVID-19 assays that are more sensitive than the current RT-PCR (reverse transcription polymerase chain reaction) gold standard assay are needed to improve disease control efforts. We describe the development of a portable, ultrasensitive saliva-based COVID-19 assay with a 15-min sample-to-answer time that does not require RNA isolation or laboratory equipment. This assay uses CRISPR-Cas12a activity to enhance viral amplicon signal, which is stimulated by the laser diode of a smartphone-based fluorescence microscope device. This device robustly quantified viral load over a broad linear range (1 to 105 copies/μl) and exhibited a limit of detection (0.38 copies/μl) below that of the RT-PCR reference assay. CRISPR-read SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) RNA levels were similar in patient saliva and nasal swabs, and viral loads measured by RT-PCR and the smartphone-read CRISPR assay demonstrated good correlation, supporting the potential use of this portable assay for saliva-based point-of-care COVID-19 diagnosis.


2005 ◽  
Vol 173 (4S) ◽  
pp. 145-145 ◽  
Author(s):  
Martin Schostak ◽  
Hans Krause ◽  
Jens Köllermann ◽  
Mark Schrader ◽  
Bernd Straub ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document