scholarly journals Flexible Film-Type Sensor for Electrochemical Measurement of Dopamine Using a Molecular Imprinting Method

2021 ◽  
Vol 2 ◽  
Author(s):  
Takumi Kishi ◽  
Toshinori Fujie ◽  
Hiroyuki Ohta ◽  
Shinji Takeoka

Neurotransmitters, which are responsible for the signal transduction of nerve cells in the brain, are linked not only to various emotions and behaviors in our daily life, but also to brain diseases. Measuring neurotransmitters in the brain therefore makes a significant contribution to the progress of brain science. The purpose of this study is to develop a flexible thin film-type sensor that can electrochemically measure dopamine (DA) selectively and with high sensitivity. The thin-film sensor was prepared by printing gold colloidal ink on a polyimide film with a thickness of 25 µm—which the most flexible of the films examined that could maintain the buckling load (1 mN) required for insertion into the brain. The electrode (DA-PPy electrode) was then prepared by electropolymerization of polypyrrole (PPy) using DA as a template. The flexural rigidity of the sensor was 4.3 × 103 nNm, which is the lowest of any neurotransmitter sensors reported to date. When a DA solution (0–50 nM) was measured with the DA-PPy electrode using square-wave voltammetry (SWV), the slope of the calibration curve was 3.3 times higher than that of the PPy only negative control electrode, indicating an improvement in sensitivity by molecular imprinting with DA. The sensor was used to measure 0−50 nM norepinephrine (NE) and serotonin (5-HT), and the slope of the DA calibration curve at 0.24 V (19 ± 4.4 nA/nM) was much greater than those of NE (0.99 ± 3.3 nA/nM) and 5-HT (2.5 ± 2.4 nA/nM) because the selectivity for DA was also improved by molecular imprinting.

2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1071
Author(s):  
Isabel Costantino ◽  
Juliet Nicodemus ◽  
Jerold Chun

Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell’s genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2018 ◽  
Vol 63 (1) ◽  
pp. 3795-3798
Author(s):  
Meifeng Chen ◽  
Xinying Ma ◽  
Xia Li ◽  
Mingjing Yin ◽  
Yanyun Li ◽  
...  

2011 ◽  
Vol 254 ◽  
pp. 167-170 ◽  
Author(s):  
Subodh Srivastava ◽  
Sumit Kumar ◽  
Vipin Kumar Jain ◽  
Y.K. Vijay

In the present work we have reported the effect of temperature on the gas sensing properties of pure Polyaniline (PANI) and Multiwall carbon nanotube (MWNT) doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and MWNT doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline using ammonium persulfate in an acidic medium. The thin sensing film of chemically synthesized PANI and MWNT doped PANI composite were deposited onto finger type Cu-interdigited electrodes using spin cast technique to prepared chemiresistor type gas sensor. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature, MWNT doped PANI composite sensor shows higher response value and sensitivity with good repeatability in comparison to pure PANI thin film sensor. It was also observed that both PANI and MWNT doped PANI composite thin film based sensors showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.


2015 ◽  
Vol 157 ◽  
pp. 169-171 ◽  
Author(s):  
Vinoth Kumar Jayaraman ◽  
Arturo Maldonado Álvarez ◽  
María de la Luz Olvera Amador

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 334
Author(s):  
Huilong Luo ◽  
Xavier Declèves ◽  
Salvatore Cisternino

The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.


Sign in / Sign up

Export Citation Format

Share Document