scholarly journals Naturally Occurring Exosome Vesicles as Potential Delivery Vehicle for Bioactive Compounds

Author(s):  
Precious Akuma ◽  
Ogadimma D. Okagu ◽  
Chibuike C. Udenigwe
Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 196
Author(s):  
Muhammad Bilal ◽  
Leonardo Vieira Nunes ◽  
Marco Thúlio Saviatto Duarte ◽  
Luiz Fernando Romanholo Ferreira ◽  
Renato Nery Soriano ◽  
...  

Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease (IBD) are inefficient and the effect of the administered therapeutic cues is limited. The reasonable immune response or invasion should also be circumvented for successful clinical translation of engineered cues as highly efficient and robust bioactive entities. In this context, research is underway worldwide, and researchers have redirected or regained their interests in valorizing the naturally occurring biological entities/resources, for example, algal biome so-called “treasure of untouched or underexploited sources”. Algal biome from the marine environment is an immense source of excellence that has also been demonstrated as a source of bioactive compounds with unique chemical, structural, and functional features. Moreover, the molecular modeling and synthesis of new drugs based on marine-derived therapeutic and biological cues can show greater efficacy and specificity for the therapeutics. Herein, an effort has been made to cover the existing literature gap on the exploitation of naturally occurring biological entities/resources to address and efficiently manage IBD. Following a brief background study, a focus was given to design characteristics, performance evaluation of engineered cues, and point-of-care IBD therapeutics of diverse bioactive compounds from the algal biome. Noteworthy potentialities of marine-derived biologically active compounds have also been spotlighted to underlying the impact role of bio-active elements with the related pathways. The current review is also focused on the applied standpoint and clinical translation of marine-derived bioactive compounds. Furthermore, a detailed overview of clinical applications and future perspectives are also given in this review.


Author(s):  
Renato IORI ◽  
Gina R. DE NICOLA ◽  
Manuela BAGATTA ◽  
Eleonora PAGNOTTA

Dietary intake of Brassicaceae (Crucifers) provides not only nutrients, but also a highly interesting class of secondary metabolites beneficial to health, known as glucosinolates (GLs). These compounds possess a -D-glucopyranosyl unit connected to a O-sulfated anomeric Z-thiohydroximate function, and a side chain R which is the only variable part of the chemical structure. Up to now, more than 120 naturally-occurring GLs have been carachterized


2009 ◽  
Vol 4 (11) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Vijay C. Verma ◽  
Ravindra N. Kharwar ◽  
Gary A. Strobel

This review describes examples of naturally occurring bioactive compounds obtained from fungal endophytes from various host plants. The main topics addressed are sources, identification, biological activity, biosynthesis, and ecological and chemosystematic significance of those bioactive compounds whose sources were well defined.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2646
Author(s):  
Yuanhang Yao ◽  
Jiaxing Jansen Lin ◽  
Xin Yi Jolene Chee ◽  
Mei Hui Liu ◽  
Saif A. Khan ◽  
...  

Inadequate intake of lutein is relevant to a higher risk of age-related eye diseases. However, lutein has been barely incorporated into foods efficiently because it is prone to degradation and is poorly bioaccessible in the gastrointestinal tract. Microfluidics, a novel food processing technology that can control fluid flows at the microscale, can enable the efficient encapsulation of bioactive compounds by fabricating suitable delivery structures. Hence, the present study aimed to evaluate the stability and the bioaccessibility of lutein that is encapsulated in a new noodle-like product made via microfluidic technology. Two types of oils (safflower oil (SO) and olive oil (OL)) were selected as a delivery vehicle for lutein, and two customized microfluidic devices (co-flow and combination-flow) were used. Lutein encapsulation was created by the following: (i) co-flow + SO, (ii) co-flow + OL, (iii) combination-flow + SO, and (iv) combination-flow + OL. The initial encapsulation of lutein in the noodle-like product was achieved at 86.0 ± 2.7%. Although lutein’s stability experienced a decreasing trend, the retention of lutein was maintained above 60% for up to seven days of storage. The two types of device did not result in a difference in lutein bioaccessibility (co-flow: 3.1 ± 0.5%; combination-flow: 3.6 ± 0.6%) and SO and OL also showed no difference in lutein bioaccessibility (SO: 3.4 ± 0.8%; OL: 3.3 ± 0.4%). These results suggest that the types of oil and device do not affect the lutein bioaccessibility. Findings from this study may provide scientific insights into emulsion-based delivery systems that employ microfluidics for the encapsulation of bioactive compounds into foods.


MedChemComm ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 1803-1817 ◽  
Author(s):  
Khemchand Surana ◽  
Bharatkumar Chaudhary ◽  
Monika Diwaker ◽  
Satyasheel Sharma

Diaryl ketones are an important scaffold in drug discovery due to their prevalence in naturally occurring bioactive compounds. This review discusses molecules containing the benzophenone moiety that have potent biological activity.


2020 ◽  
Vol 24 (6) ◽  
pp. 583-621
Author(s):  
Arvind Singh ◽  
Gurpreet Kaur ◽  
Bubun Banerjee

Bis(indolyl)methane skeleton is the main building block of many naturally occurring bioactive compounds. Bis(indolyl)methanes are found to possess a wide range of pharmaceuitical efficacies. These important scaffolds are being used as anti-cancer, antioxidant, anti-bacterial, anti-inflammatory, and anti-proliferative agents. In this review, we summarized the latest developments on the synthesis of various bis/tris(indolyl)methane derivatives from the reactions of two equivalents of indoles and one equivalent of aldehydes or indole-3-carbaldehydes under various reaction conditions. More than hundred different catalysts were employed for these transformations which include various metal catalysts, ionic liquids, organocatalysts, surfactants, homogeneous, heterogeneous catalysts etc.


Sign in / Sign up

Export Citation Format

Share Document