scholarly journals Field Application of Organic Fertilizers Triggers N2O Emissions From the Soil N Pool as Indicated by 15N-Labeled Digestates

2021 ◽  
Vol 4 ◽  
Author(s):  
Franziska Häfner ◽  
Reiner Ruser ◽  
Ingrid Claß-Mahler ◽  
Kurt Möller

Anaerobic digestion (AD) can generate biogas while simultaneously producing digestate which can be used as fertilizer. Feedstocks used for AD influence digestate composition, which in turn may affect carbon (C) and nitrogen (N) turn-over in soils and subsequently influence nitrous oxide (N2O) emissions after soil application. Assessment of greenhouse gas emissions from digestates can help to evaluate the overall sustainability of an agricultural production system. The objective of this study was therefore to evaluate and understand the effect of differences in digestate composition on in situ N2O emissions within the 1st weeks after application of seven digestates. The digestates were derived from different feedstocks and 15N-labeled, either in total N or only in ammonium-N. Therefore, the experimental design enabled us to differentiate between potential N2O-N sources (i.e., digestate N or soil N). Furthermore, it allowed to distinguish to some extent between organic-N and ammonium-N as potential N sources for denitrification. Digestates were homogeneously incorporated into the upper 5 cm of microplots in an arable Haplic Luvisol in South Germany at a rate of 170 kg N ha−1. After application, N2O fluxes were measured for ~60 days (May-July) using the closed chamber method in 2 experimental years. Mainly due to higher precipitations in the 1st year, cumulative N2O emissions were higher (312–1,580 g N2O-N ha−1) compared to the emissions (133–690 g N2O-N ha−1) in the 2nd year. Between 16–33% (1st year) and 17–38% (2nd year) of N2O emissions originated from digestate N, indicating that digestate application triggered N2O production and release mainly from soil N. This effect was strongest immediately after digestate application. It was concluded that the first (short term) peak in N2O emissions after digestate application is largely related to denitrification of soil-N. However, the experimental setup does not allow to differentiate between the different denitrification pathways. Weather conditions showed a substantial effect on N2O emissions, where the correlation between N2O and CO2 flux rates hinted on denitrification as main N2O source. The effect of digestate composition, particularly organic N from the digestate, on soil N2O emissions seems to be of minor relevance.

Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


2014 ◽  
Vol 11 (4) ◽  
pp. 5765-5809 ◽  
Author(s):  
T. Eickenscheidt ◽  
A. Freibauer ◽  
J. Heinichen ◽  
J. Augustin ◽  
M. Drösler

Abstract. The change in the German energy policy resulted in a strong development of biogas plants in Germany. As a consequence, huge amounts of nutrient rich residues remain from the fermentative process, which are used as organic fertilizers. Drained peatlands are increasingly used to satisfy the huge demand for fermentative substrates and the digestate is returned to the peatlands. However, drained organic soils are considered as hot spots for nitrous oxide (N2O) emissions and organic fertilization is additionally known to increase N2O emissions from managed grasslands. Our study addressed the questions (a) to what extent biogas digestate and cattle slurry application increase N2O, methane (CH4) and ammonia (NH3) fluxes as well as the mineral nitrogen use efficiency (NUEmin), and (b) how different soil organic matter contents (SOM) promote the production of N2O. The study was conducted at two areas within a grassland parcel, which differed in their soil organic carbon (SOC) contents. At each area (named Corg-medium and Corg-high) two sites were established, one was fertilized five times with biogas digestate and one with cattle slurry. For each treatment, fluxes of N2O and CH4 were measured over two years using the closed chamber method. For NH3 measurements we used the calibrated dynamic chamber method. On an annual basis the application of biogas digestate significantly enhanced the N2O fluxes compared to the application of cattle slurry and additionally increased the NUEmin. Furthermore, N2O fluxes from the Corg-high site significantly exceeded N2O fluxes from the Corg-medium sites. Annual cumulative emissions ranged from 0.91 ± 0.49 kg N ha−1 yr−1 to 3.14 ± 0.91 kg N ha−1 yr−1. Significantly different CH4 fluxes between the investigated treatments or the different soil types were not observed. Cumulative annual CH4 exchange rates varied between −0.21 ± 0.19 kg C ha−1 yr−1 and −1.06 ± 0.46 kg C ha−1 yr−1. Significantly higher NH3 losses from treatments fertilized with biogas digestate compared to those fertilized with cattle slurry were observed. The total NH3 losses following splash plate application were 18.17 kg N ha−1 for the digestate treatments and 3.48 kg N ha−1 for the slurry treatments (36% and 15% of applied NH4+-N). The observed linear increase of 16 days cumulative N2O-N exchange or rather annual N2O emissions, due to a higher mean groundwater level and a higher application rate of NH4+-N, reveal the importance of site adapted N fertilization and the avoidance of N surpluses in Corg rich grasslands.


2012 ◽  
Vol 496 ◽  
pp. 502-506
Author(s):  
Hui Jie Lü ◽  
Hong Bo He ◽  
Xu Dong Zhang

Fertilizer applications to soil are widely known to be the most important anthropogenic sources to influence soil N turnover in agricultural ecosystems. More information is required on the relationships between soil organic N (SON) forms in order to predict the maintenance, transformation and stability of soil N. Accordingly, 15N-labeled (NH4)2SO4 (totally 200 kg N/ha) was applied to a maize crop throughout the entire growing period to investigate the distribution and the dynamics of fertilizer-derived N in hydrolyzable-NH3 fraction by measuring the labeled N in them. The accumulation of 15N in hydrolyzable-NH3 fraction was time-dependent although the total N concentration changed only slightly. The transformation of the residual fertilizer N to hydrolyzable-NH3-15N was maximal during the silking and grain filling stages, suggesting the fertilizer N was immobilized at an early stage during the growing period. The rapid decrease of 15N in hydrolyzable-NH3 pool indicated that hydrolyzable-NH3-15N was a temporary pool for fertilizer N retention and was able to release fertilizer N for uptake by the current crop


1980 ◽  
Vol 60 (2) ◽  
pp. 365-372 ◽  
Author(s):  
R. E. KARAMANOS ◽  
D. A. RENNIE

Rather marked variations in δa15N values were obtained in a study carried out on samples taken from four soils belonging to the Weyburn soil association. The δa15N of the total N of well-drained depressional profiles dropped sharply with depth and, in contrast, for upper slope positions was relatively constant to a depth of approximately 5 m. This characteristic enrichment in the heavier isotope of total nitrogen of surface horizons may represent long-term immobilization of partially oxidized ammonium N into the organic N fraction; δa15N of the total N more closely represents past soil-forming processes while that of the nitrate N appears to reflect, in addition, recent N cycle stresses.


2015 ◽  
Vol 39 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Marco André Grohskopf ◽  
Paulo Cezar Cassol ◽  
Juliano Corulli Correa ◽  
Maria Sueli Heberle Mafra ◽  
Jonas Panisson

The application of pig slurry may have a different effect on nitrogen dynamics in soil compared to mineral fertilization. Thus, the aim of this study was to determine the different forms of organic N in a Latossolo Vermelho distroférrico (Typic Hapludox) and their relationship to N uptake by crops in response to 10 years of annual application of pig slurry and mineral fertilizer. The treatments were application rates of 0, 25, 50, 100, and 200 m3 ha-1 of pig slurry, in addition to mineral fertilizer, organized in a randomized block design with four replications. The N contents were determined in the plant tissue and in the forms of total N and acid hydrolyzed fractions: ammonium-N, hexosamine-N, α-amino-N, amide-N, and unidentified-N. Annual application of pig slurry or mineral fertilizer increased the total-N content in the 0-10 cm depth layer. The main fractions of organic N in the soil were α-amino-N when pig slurry was applied and unidentified-N in the case of mineral fertilizers. Pig slurry increased the N fractions considered as labile: α-amino-N, ammonium-N, and amide-N. The increase in these labile organic N fractions in the soil through pig slurry application allows greater N uptake by the maize and oat crops in a no-tillage system.


2008 ◽  
Vol 88 (5) ◽  
pp. 655-669 ◽  
Author(s):  
P. Rochette ◽  
D E Worth ◽  
E C Huffman ◽  
J A Brierley ◽  
B G McConkey ◽  
...  

International initiatives such as the United Nations Framework Convention on Climate Change and the Kyoto Protocol require that countries conduct national inventories of their greenhouse gas emissions. The primary objective of the present study was to apply a country-specific (Tier II) methodology at the regional (≈150 000 ha) scale to estimate direct N2O emissions from agricultural soils in Canada for the period 1990–2005. Other N2O sources such as manure management and indirect emissions were estimated using the Tier I Intergovernmental Panel on Climate Change (IPCC) methodology and were included to provide a complete assessment of agricultural N2O emissions. Total N2O emissions from agricultural sources averaged 58.1 Gg N2O-N yr-1 between 1990 and 2005 (from 48.9 in 1990 to 71.6 Gg N2O-N yr-1 in 2004). Of these mean emissions, 39.3 Gg N2O-N yr-1 or 68% were direct emissions from soils, 8.7 Gg N2O-N yr-1 or 15% were direct emissions from animal waste management systems and 10.1 Gg N2O-N yr-1 or 17% were from indirect emissions. Application of synthetic N fertilizers was the largest direct source of soil N2O with average emissions during the inventory period of 13.7 Gg N2O-N yr-1 or 35% of direct emissions. Crop residues (9.3 Gg N2O-N yr-1; 24%), grazing animals (6.8 Gg N2O-N yr-1; 17%) and manure applied to soils (4.1 Gg N2O-N yr-1; 10%) were the other major direct soil N2O sources. New non-IPCC N2O sources/offsets included in the Tier II methodology accounted for 10% of total direct soil emissions. Emissions occurring during summerfallow (2.2 Gg N2O-N yr-1; 6%), in lower portions of the landscape (2.2 Gg N2O-N yr-1; 6%), and following irrigation (0.7 Gg N2O-N yr-1; 2%) were partially offset by changes in tillage practices (-1.2 Gg N2O-N yr-1; -3%) and in coarse-textured soils (-0.2 Gg N2O-N yr-1; -1%). Differences in N2O estimates between Tier I and Tier II approaches mainly arise from the use of lower fertilizer-induced emission factors in the dry Prairie region and the addition of several new N2O sources/offsets in the Tier II methodology. Key words: Nitrous oxide, soils, greenhouse gases, inventory


Author(s):  
Meihua Deng ◽  
Mudan Hou ◽  
Naoko Ohkama-Ohtsu ◽  
Tadashi Yokoyama ◽  
Haruo Tanaka ◽  
...  

A field experiment was conducted for 2 years in Green Tea Laboratory of Saitama Prefectural Agriculture and Forestry Research Center, Iruma, Saitama, Japan from March 2014 to December 2015. Controlled release fertilizers (CRF) or organic fertilizers (ORG) which is the mixture of chicken manure and oil cakewere applied with the amount of 450 kg N ha-1 yr-1 in 2014 and 397 kg N ha-1 yr-1 in 2015. Nitrous oxide (N2O) emissionsfrom soil in green tea fields were measured by closed chamber method. The results showed that CRF has significantly lower N2O compared to ORG. The cumulative N2O emissions from CRF accounted for 51% of N2O emissions from ORG fields and 138% of control with no fertilizer treatment. The N2O flux from the row was higher than that of under the canopy, since fertilizer were applied on the row. However the total emission from the area between the rows was lower than that under the canopy because of the area ratio of row and canopy was 1:5.


2017 ◽  
Vol 51 (04) ◽  
Author(s):  
Widyati Slamet ◽  
Endang Dwi Purbajanti ◽  
Adriani Darmawati ◽  
Eny Fuskhah

The objective of this research is to assess the growth and physiological characteristics of lettuce in the delivery of different N-organics. Research was conducted at Faculty of Animal and Agricultural Sciences, Diponegoro University, Indonesia. The materials used were seeds of lettuce (Lettuce sativa L) on Oxisol soil types, with the total N content of 0.18 %, P (18 mg. g-1), K (23 mg. g-1) and C (1.52 %) were utilized. The organic fertilizers applied were cow-, sheep-, and guano manures, and compost and green manure (Leucaena leucocephala). The experimental design was a randomized block design with four replications and five treatments. The treatment dose of fertilizer applied is equivalent to 100 kg N / ha, namely: cow-manure ; sheep-manure; guano manure ; compost and green manure. Green manure, set into the ground is Leucaena leucocephala. The variables measured were the number of leaves, leaf area, leaf area index(LAI), the rate of photosynthesis, Chlorophyll total, anti-oxidant activity, fresh weight of lettuce per plot. The data obtained were analyzed using an ANOVA followed by the Duncan test. Guano fertilizer provided the most excellent effect on leaves, LAI, the rate of photosynthesis and biomass lettuce. Fertilizers derived from animal manure (guano, cattle, goats) gave a more excellent effect on the rate of photosynthesis of plants. Compost origin gave the lowest effect on leaf area, LAI, and the rate of photosynthesis. The number of leaves, total chlorophyll, and antioxidant content were not influenced by the different organic N fertilizers.


1987 ◽  
Vol 67 (3) ◽  
pp. 521-531 ◽  
Author(s):  
M. GIROUX ◽  
T. SEN TRAN

The objective of this study was to compare several methods of estimating the availability of soil nitrogen to plants. Total soil N, organic matter content, mineralized N during a 2 wk incubation at 35 °C, organic N in 6 N HC1, 0.01 M NaHCO3 and 1 N KCl extracts, and finally mineral N extracted by 2 N KCl were evaluated and contrasted with N uptake by sugar beets cultivated on 19 soils in a greenhouse experiment. The relative yield or plant N uptake gave the highest correlation coefficients when both mineral and organic N fractions in soil extract were considered. The incubation methods gave the best correlation coefficient with relative yield (R2 = 0.85**). N contents in NaHCO3 extract were more correlated with relative yield or N uptake than total N, organic matter contents or N extracted by 6 N HCl or 1 N KCl. The UV absorbance values obtained at 205 nm with 0.01 M NaHCO3 extract were also well correlated with relative yield (R2 = 0.78**) and plant N uptake (R2 = 0.66**). At this wavelength, as well as at 220 nm, the absorbance was affected by mineral and organic N contents in the extract. However, at 260 nm, the UV absorbance was only related to organic N in the extract; consequently these absorbance values were less correlated with relative yield (R2 = 0.49**) or N uptake (R2 = 0.27*). Furthermore, the absorbance measured at 205 nm was too sensitive to NO3-N and organic N concentration and this relationship was not linear in the high-N concentration range. The UV absorbance at 220 nm in the 0.01M NaHCO3 extract seemed to be a promising method to evaluate the availability of soil N. Key words: Soil nitrogen, incubation, ultraviolet absorbance, hydrolyzable nitrogen


2000 ◽  
Vol 134 (2) ◽  
pp. 159-168 ◽  
Author(s):  
D. R. CHADWICK ◽  
F. JOHN ◽  
B. F. PAIN ◽  
B. J. CHAMBERS ◽  
J. WILLIAMS

Twenty slurries, 20 farmyard manures (FYM) and 10 poultry manures were chemically analysed to characterize their nitrogen (N) fractions and to assess their potential organic N supply. The organic N fraction varied between manure types and represented from 14% to 99% of the total N content. The readily mineralizable N fraction, measured by refluxing with KCl, was largest in the pig FYMs and broiler litters, but on average only represented 7–8% of the total N content. A pot experiment was undertaken to measure N mineralization from the organic N fraction of 17 of these manures. The ammonium-N content of the manures was removed and the remaining organic N mixed with a low mineral N status sandy soil, which was sown with perennial ryegrass (Lolium perenne L.). N offtake was used as a measure of mineralization throughout the 199 day experiment. The greatest N mineralization was measured from a layer manure and a pig slurry, where N offtake represented 56% and 37% of the organic N added, respectively. Lowest (%) N mineralization was measured from a dairy cow slurry (< 2%) and a beef FYM (6%). The mineralization rate was negatively related to the C[ratio ]organic N ratio of the ammonium-N stripped manures (P < 0·01, r = −0·63).


Sign in / Sign up

Export Citation Format

Share Document