scholarly journals The Realm of Microbial Pigments in the Food Color Market

2021 ◽  
Vol 5 ◽  
Author(s):  
Babita Rana ◽  
Malini Bhattacharyya ◽  
Babita Patni ◽  
Mamta Arya ◽  
Gopal K. Joshi

Colors are added to food items to make them more attractive and appealing. Food colorants therefore, have an impressive market due to the requirements of food industries. A variety of synthetic coloring agents approved as food additives are available and being used in different types of food prepared or manufactured worldwide. However, there is a growing concern that the use of synthetic colors may exert a negative impact on human health and environment in the long run. The natural pigments obtained from animals, plants, and microorganisms are a promising alternative to synthetic food colorants. Compared to animal and plant sources, microorganisms offer many advantages such as no seasonal impact on the quality and quantity of the pigment, ease of handling and genetic manipulation, amenability to large scale production with little or no impact on biodiversity etc. Among the microorganisms algae, fungi and bacteria are being used to produce pigments as food colorants. This review describes the types of microbial food pigments in use, their benefits, production strategies, and associated challenges.

2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


2012 ◽  
Vol 706-709 ◽  
pp. 1221-1226 ◽  
Author(s):  
Anne Mertens ◽  
Aude Simar ◽  
Francis Delannay

Mg-Al-Zn alloys have been reinforced with carbon fibres using either theliquid stateprocess of squeeze casting (SC), or friction stir processing (FSP), asolid stateprocess developed more recently and that appears as a promising alternative for the large-scale production of C-Mg composites. Both processes have shown their ability to produce sound composites with enhanced strength compared to the non-reinforced alloys. In SC composites, the unsized woven C fabric remains intact while in the FSP composites the sized C fabric is fragmented in short fibres, with an aspect ratio typically equal to 4, homogenously distributed in the Mg alloy matrix.


Author(s):  
Vangelis Papadimitropoulos

In this paper I present a critical overview of the contemporary political theories of the Commons, classified in three main categories: 1) the liberal 2) the reformist and 3) the anti-capitalist. Advocates of the liberal theory of the Commons take a stand in favour of the coexistence of the Commons with the state and the market. The reformists argue for the gradual adjustment of capitalism to the Commons with the aid of a partner state, while the anti-capitalists contrast both the liberals and the reformists by supporting the development of the commons against and beyond capitalism. I make the case that both the liberal and the anti-capitalist theorists miss the likelihood of technology rendering redundant large-scale production in the future, and forcing thus capitalism to adjust to the Commons in the long run. The prospect, therefore, of an open cooperativism introduced by the reformist theory holds significant potential with respect to the future development of the Commons. For the Commons however to expand and flourish, a global institutional reform, followed by a set of inter-local and international principles, is sine qua non. Hence, transparency of information, distribution of value, solidarity and bottom-up self-management are the core variables of individual and collective autonomy inasmuch as they permit a community or group to formulate its values in relation to the needs and skills of its members.


2017 ◽  
Vol 9 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Charles Oluwaseun ADETUNJI ◽  
Julius Kola OLOKE ◽  
Gandham S. PRASAD ◽  
Isaac Oluseun ADEJUMO

The use of phytopathogenic fungi in biological control of weeds may represent a promising alternative to the use of chemicals and may lead to the sustainability of agro-ecosystems. In the current study, strain C1136 was developed into various formulations and their activities were compared with a chemical herbicides using glyphosate in a screen house, applying standard procedure. All the bioherbicide treatments gave significantly higher yield component on the following parameters: tasselling, number of cobs, day of silking, number of ears, number of grain/cob, weight of 100 grains, number of cob, weight of cob, and length of cob from maize when compared to the chemical-treated herbicides and weedy cheek. Moreover, the bioherbicidal formulation coded BH4 (32 g of semolina + 6 g kaolin + 20 mL of glycerol + mutant strain of Lasiodiplodia pseudotheobromae + glucose+ sucrose + fructose + dextrose + lactose sugar + peptone) showed the highest activities when compared to other formulations. Conclusively, this study revealed that Lasiodiplodia pseudotheobromae C1136 strain has bioherbicidal activity and could therefore be exploited for large scale production of bioherbicides for weed control in conventional farming, to improve yield and enhance food security.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 947 ◽  
Author(s):  
Usuma Naknikham ◽  
Giuliana Magnacca ◽  
Ang Qiao ◽  
Peter Kjær Kristensen ◽  
Vittorio Boffa ◽  
...  

Hetero-photocatalytic graphene-TiO2 materials have, in the literature, been found to possess better photocatalytic activity for environmental applications compared to pure TiO2. These types of materials can be prepared in different ways; however, their photocatalytic performance and quality are not easily controlled and reproduced. Therefore, we synthetized graphene oxide-TiO2 nanoparticles by sol-gel reaction from TiCl4, as precursor, with two different methods of synthesis and with a graphene oxide (GO) loading ranging from 0 to 1.0. This approach led to a good adhesion of GO to TiO2 through the Ti-O-C bonding, which could enhance the photocatalytic performances of the materials. Overall, 0.05 wt % GO loading gave the highest rate in the photodegradation of phenol under visible light, while higher GO loadings had a negative impact on the photocatalytic performances of the composites. The 0.05 wt % GO-TiO2 composite material was confirmed to be a promising photocatalyst for water pollutant abatement. The designed synthetic approach could easily be implemented in large-scale production of the GO-TiO2 coupling materials.


2011 ◽  
Vol 77 (21) ◽  
pp. 7508-7516 ◽  
Author(s):  
Jiequn Wu ◽  
Qinglin Zhang ◽  
Wei Deng ◽  
Jiangchao Qian ◽  
Siliang Zhang ◽  
...  

ABSTRACTLarge-scale production of erythromycin A (Er-A) relies on the organismSaccharopolyspora erythraea, in which lack of a typicalattBsite largely impedes the application of phage ΦC31 integrase-mediated recombination into site-specific engineering. We herein report construction of an artificialattBsite in an industrialS. erythraeastrain, HL3168 E3, in an effort to break the bottleneck previously encountered during genetic manipulation mainly from homologous or unpredictable nonspecific integration. Replacement of a cryptic gene,nrps1-1, with a cassette containing eightattBDNA sequences did not affect the high Er-producing ability, setting the stage for precisely engineering the industrial Er-producing strain for foreign DNA introduction with a reliable conjugation frequency. Transfer of either exogenous or endogenous genes of importance to Er-A biosynthesis, including theS-adenosylmethionine synthetase gene for positive regulation,vhbfor increasing the oxygen supply, and two tailoring genes,eryKanderyG, for optimizing the biotransformation at the late stage, was achieved by taking advantage of this facility, allowing systematic improvement of Er-A production as well as elimination of the by-products Er-B and Er-C in fermentation. The strategy developed here can generally be applicable to other strains that lack theattBsite.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Leticia Miranda Cesário ◽  
Giovanna Pinto Pires ◽  
Rafael Freitas Santos Pereira ◽  
Elisabete Fantuzzi ◽  
André da Silva Xavier ◽  
...  

Abstract Lipases are triacylglycerol hydrolases that catalyze hydrolysis, esterification, interesterification, and transesterification reactions. These enzymes are targets of several industrial and biotech applications, such as catalysts, detergent production, food, biofuels, wastewater treatment, and others. Microbial enzymes are preferable for large scale production due to ease of production and extraction. Several studies have reported that lipases from filamentous fungi are predominantly extracellular and highly active. However, there are many factors that interfere with enzyme production (pH, temperature, medium composition, agitation, aeration, inducer type, and concentration, etc.), making control difficult and burdening the process. This work aimed to optimize the lipase production of four fungal isolates from oily residues (Penicillium sp., Aspergillus niger, Aspergillus sp., and Aspergillus sp.). The lipase-producing fungi isolates were morphologically characterized by optical and scanning electron microscopy. The optimal lipase production time curve was previously determined, and the response variable used was the amount of total protein in the medium after cultivation by submerged fermentation. A complete factorial design 32 was performed, evaluating the temperatures (28 °C, 32 °C, and 36 °C) and soybean oil inducer concentration (2%, 6%, and 10%). Each lipase-producing isolate reacted differently to the conditions tested, the Aspergillus sp. F18 reached maximum lipase production, compared to others, under conditions of 32 °C and 2% of oil with a yield of 11,007 (µg mL−1). Penicillium sp. F04 achieved better results at 36 °C and 6% oil, although for Aspergillus niger F16 was at 36 °C and 10% oil and Aspergillus sp. F21 at 32 °C and 2% oil. These results show that microorganisms isolated from oily residues derived from environmental sanitation can be a promising alternative for the large-scale production of lipases. Graphical Abstract


2020 ◽  
Vol 1012 ◽  
pp. 141-146
Author(s):  
F.G. Benitez Jara ◽  
P. D. V. Cruz ◽  
Lusinete Pereira Barbosa ◽  
J.C.S. Casini ◽  
S. K. Sakata ◽  
...  

In the present work, attempts of reducing a graphene oxide powder using a low temperature hydrogenation disproportionation desorption and the recombination process (L-HDDR) has been carried out. A lower processing temperature in large scale production is significant when costs are concerned. Graphite oxide was prepared using a modified Hummers’ method dispersed in ethanol and exfoliated using ultrasonication to produce Graphene Oxide (GO). Investigations have been carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results of L-HDDR processing graphene oxide powder, using unmixed hydrogen at 400°C and relatively low pressures (<2 bars) have been reported. X-ray diffraction patterns showed a reduction of graphene oxide with the L-HDDR process. The results showed that both processes, the L-HDDR as well as the standard HDDR, may be applied to the reduction of graphene oxide in order to produce supercapacitor materials. The advantage of employing the L-HDDR process is a relatively low temperature reducing the cost of treatment, what is a very important factor for producing a large amount of material. Thus, the L-HDDR process has been considered a promising alternative method of reducing graphene oxide with efficiency, with the possibility of large scale production.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 713
Author(s):  
Yuanyuan Ren ◽  
Han Sun ◽  
Jinquan Deng ◽  
Junchao Huang ◽  
Feng Chen

Microalgae are excellent biological factories for high-value products and contain biofunctional carotenoids. Carotenoids are a group of natural pigments with high value in social production and human health. They have been widely used in food additives, pharmaceutics and cosmetics. Astaxanthin, β-carotene and lutein are currently the three carotenoids with the largest market share. Meanwhile, other less studied pigments, such as fucoxanthin and zeaxanthin, also exist in microalgae and have great biofunctional potentials. Since carotenoid accumulation is related to environments and cultivation of microalgae in seawater is a difficult biotechnological problem, the contributions of salt stress on carotenoid accumulation in microalgae need to be revealed for large-scale production. This review comprehensively summarizes the carotenoid biosynthesis and salinity responses of microalgae. Applications of salt stress to induce carotenoid accumulation, potentials of the Internet of Things in microalgae cultivation and future aspects for seawater cultivation are also discussed. As the global market share of carotenoids is still ascending, large-scale, economical and intelligent biotechnologies for carotenoid production play vital roles in the future microalgal economy.


Sign in / Sign up

Export Citation Format

Share Document