scholarly journals Hoof Pressure Distribution Pattern of Blue Sheep During Walking on Different Slopes: A Subject-Specific Analysis

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiangyu Liu ◽  
Hailin Kui ◽  
Zhihui Qian ◽  
Lei Ren

The purpose of this study was to quantitatively assess the vertical force distribution (VFD) of subject-specific healthy blue sheep while walking on different slopes using a pressure-sensing walkway. The blue sheep was trained to walk over the pressure-sensing walkway by choosing a comfortable walking speed, and the slope angle increased from 0° to 25°. The sheep's hooves were divided into four quadrants, namely, the cranio-lateral, cranio-medial, caudo-lateral, and caudo-medial quadrants, to investigate the VFD of the peak vertical force (PVF), vertical impulse (VI) and occurrence time of the PVF during the stance phase (TPVF). This study demonstrates that the main stressed quadrant of the front hoof changes from the caudo-medial quadrant to the cranio-medial quadrant with increasing slope. The main stressed quadrant of the rear hoof is the cranio-medial quadrant and does not change with the increasing slope. For all the slopes, the vertical force shifted from the lateral quadrant to the medial quadrant and from the caudal quadrant to the cranial quadrant. All the results obtained in the study suggest the feasibility of detecting gait changes in blue sheep, which has potential for the diagnosis of lower limb musculoskeletal diseases in quadrupeds.

2009 ◽  
Vol 30 (8) ◽  
pp. 767-772 ◽  
Author(s):  
Dong Gil Lee ◽  
Brian L. Davis

Background: One of the more serious diabetic complications is Charcot neuroarthropathy (CN), a disease that results in arch collapse and permanent foot deformity. However, very little is known about the etiology of CN. From a mechanical standpoint, it is likely that there is a “vicious circle” in terms of (i) arch collapse causing increased midfoot joint pressures, and (ii) increased joint contact pressures exacerbating the collapse of midfoot bones. This study focused on assessment of peak joint pressure difference between diabetic and non-diabetic cadaver feet during simulated walking. We hypothesized that joint pressures are higher for diabetics than normal population. Materials and Methods: Sixteen cadaver foot specimens (eight control and eight diabetic specimens) were used in this study. Human gait at 25% of typical walking speed (averaged stance duration of 3.2s) was simulated by a custom-designed Universal Musculoskeletal Simulator. Four medial midfoot joint pressures (the first metatarsocuneiform, the medial naviculocuneiform, the middle naviculocuneiform, and the first intercuneiform) were measured dynamically during full stance. Results: The pressures in each of the four measured midfoot joints were significantly greater in the diabetic feet ( p = 0.015, p = 0.025, p < 0.001, and p = 0.545, respectively). Conclusion: Across all four tested joints, the diabetic cadaver specimens had, on average, 46% higher peak pressures than the control cadaver feet during the simulated stance phase. Clinical Relevance: This finding suggests that diabetic patients could be predisposed to arch collapse even before there are visible signs of bone or joint abnormalities.


Author(s):  
Michelle Roland ◽  
Peter G. Adamczyk ◽  
Michael E. Hahn

The calculated roll-over shape and respective radius of intact and prosthetic feet has been shown to be a useful measure of lower limb function during walking [1–2]. Hansen et al [3] reported that the roll-over radius, R, is constant over a range of speeds for the intact foot-ankle system. It may be assumed that the prosthetic foot R would also be constant with increased walking speed. Similarly, the angular stiffness of prosthetic feet is not likely to change with walking speed, as the material stiffness remains unchanged. However, the effective angular stiffness of the intact ankle may increase with the plantar flexor moment during the stance phase of gait, which typically increases in magnitude with walking speed.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8110
Author(s):  
Takuma Inai ◽  
Tomoya Takabayashi ◽  
Mutsuaki Edama ◽  
Masayoshi Kubo

Background Increased daily cumulative hip moment in the frontal plane (i.e., the product of hip moment impulse in the frontal plane during the stance phase and mean steps per day) is a risk factor for progression of hip osteoarthritis. Although hip osteoarthritis generally causes a decrease in the walking speed, its effect on hip moment impulse in the frontal plane is unclear. The purpose of this study was to examine the relationship between decrease in walking speed and hip moment impulse in the frontal plane. Methods We used a public dataset of treadmill walking in 17 older adults (mean (SD) age: 63.2 (8.0) years). The subjects walked on the treadmill for 30 s under five conditions: (1) 40% of comfortable non-dimensional speed (CNDS), (2) 55% CNDS, (3) 70% CNDS, (4) 85% CNDS, and (5) 100% CNDS. The hip moment impulse in the frontal plane non-normalized (or normalized) to step length (Nm s/kg [or Nm s/(kg m)]) for each condition was calculated. Furthermore, the relationship between walking speed and hip moment impulse in the frontal plane non-normalized (or normalized) to step length was examined using regression analysis based on a previous study. Results A decrease in non-dimensional speed (i.e., walking speed) significantly increased the non-normalized (or normalized) hip moment impulse in the frontal plane during the stance phase. The relationship between walking speed and non-normalized (or normalized) hip moment impulse in the frontal plane was fitted by a second-order polynomial. Discussion This study revealed that a decrease in walking speed increased the non-normalized (or normalized) hip moment impulse in the frontal plane in healthy older adults. This finding is useful for understanding the relationship between walking speed and hip moment impulse in the frontal plane and suggests that a decrease in walking speed may actually increase the daily cumulative hip moment in the frontal plane of patients with hip osteoarthritis.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Sarah Ward ◽  
Lukas Wiedemann ◽  
Kazuto Kora ◽  
Andrew McDaid

Abstract The relink trainer (RLT) is a novel end-effector device designed for gait-retraining poststroke. The user's foot is constrained to a specific kinematic trajectory relative to the trainer, while the hip and knee are unconstrained. As the RLT only fixes the footplate trajectory, the expected constraint on the hip and knee angles will be subject-specific due to individual lower limb geometries. This study had two objectives (1) to calculate the subject-specific theoretical joint angle trajectories, the RLT should constrain the hip and knee angle to using computer simulation, assuming a fixed hip position relative to the RLT, and (2) experimentally determine the actual hip and knee joint angle trajectories of healthy users walking in the RLT, and compare them to the theoretical joint angle trajectories. The root-mean-square (RMS) error between joint trajectories obtained from motion capture and simulation ranged from 4.31 deg to 20.51 deg for the hip and between 4.48 deg and 22.58 deg for the knee, suggestive of moderate to poor accuracy and distinct kinematic adaptation strategies when using the RLT. A linear fit method (LFM) was used to determine the similarity between the obtained and simulated joint angle trajectories. LFM results would suggest that users' hip and knee joint angles follow the simulated joint angle trajectories when walking in the RLT; however, the actual joint angle trajectories are offset from the simulation trajectories. Post hoc analyses suggest hip motion when using the RLT influences the hip and knee angle trajectory differences for participants.


2016 ◽  
Vol 32 (5) ◽  
pp. 449-453
Author(s):  
Riley C. Sheehan ◽  
Jinger S. Gottschall

In a previous study, we found that participants modified how they transitioned onto and off of ramp configurations depending upon the incline. While the transition strategies were originally attributed to ramp angles, it is possible that the plateau influenced the strategies since the final surface height also differed. Ultimately, for the current study, we hypothesized that an individual’s transition strategies would have significant main effects for ramp angle, but not plateau height. Twelve healthy, young adults transitioned onto 3 distinct ramp configurations, a 2.4-m ramp angled at 12.5° ending at a plateau height of 53 cm, a 1.2-m ramp angled at 23.5° ending at a plateau height of 53 cm, and a 2.4-m ramp angled at 23.5° ending at a plateau height of 99.5 cm. Kinematics, kinetics, and muscle activity were measured during the stance phase before contacting the ramp. In support of our hypothesis, impact peak, active peak, and all of the muscle activity variables had a significant main effect for ramp angle, with greater vertical force peaks and muscle activity on steeper ramp transitions. These findings support our previous interpretation that individuals use estimations of ramp angle, not plateau height, to determine their transition strategies.


2006 ◽  
Vol 14 (7S_Part_23) ◽  
pp. P1232-P1233 ◽  
Author(s):  
Nahla M.H. Elsaid ◽  
Qiuting Wen ◽  
Sourajit Mitra Mustafi ◽  
Shannon L. Risacher ◽  
Martin R. Farlow ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Eliska Kubonova ◽  
Zdenek Svoboda ◽  
Miroslav Janura ◽  
Jiri Gallo ◽  
Sarka Duskova

The aim of the study was to assess lower limb loading during walking after unilateral total hip arthroplasty (THA) revision. Twenty-three THA revision subjects (12 men, 11 women) were divided into three groups according to time since surgery as 1 to 6 years, 6 to 11 years, and over 11 years. Two force plates were used to measure the ground reaction force during the stance phase. On the operated limb, compared to nonoperated limb, we found lower first vertical peak in the group of 1 to 6 years after revision and lower propulsion peak in the group of 6 to 11 years since revision. In the group of 11 years since THA revision, no significant difference was found. With advancing years after surgery, the stance phase duration got reduced and propulsion peak increased in the operated limb; minimal vertical force decreased and the time of minimal vertical force increased in the nonoperated limb. The study findings suggest the tendency to a more gradual and safer weight acceptance on the operated limb during the first years after THA revision, followed by limitation of foot propulsion. Despite this fact, lower limb loading can be considered as symmetrical across the whole measured period.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Mohamad Al Naem ◽  
Lutz-Ferdinand Litzke ◽  
Florian Geburek ◽  
Klaus Failing ◽  
Johanna Hoffmann ◽  
...  

Abstract Background In a laminitic horse, the maximal loading of the toe region occurs during the breakover phase. To date, no kinetic data demonstrates the effect of supportive orthopaedic therapy in horses with laminitis on breakover phase. Thus, the purpose of this study was to examine the effect of heel elevation on the breakover phase. Eight horses with acute laminitis treated medically as well as with application of a hoof cast with heel wedge (HCHW) were included in this study. Immediately following cessation of clinical signs of acute laminitis, two measurements using the Hoof™ System were taken: the first with HCHW and the second immediately following removal of the HCHW, i.e. in barefoot condition (BFC). The hoof print was divided into three regions: toe, middle hoof, and heel. Kinetic parameters included vertical force (VF), stance duration, contact area (CA) for all hoof regions during stance phase, duration of breakover, VF in the toe region at onset of breakover and location of centre of force. Results The VF and CA were higher in the heel region (63 and 61%, respectively) and decreased significantly after removal of the HCHW (43 and 28% after removal, respectively). The breakover phase in horses with HCHW lasted 2% of stance phase and was significantly shorter than that in BFC, which lasted 6% of stance phase. The VF at onset of breakover for the toe region in horses with HCHW was significantly lower than that in BFC. The centre of the force was located at the heel region in all horses with the HCHW, and at the middle the hoof region in BFC. Conclusions Heel elevation in horses with laminitis as examined on a concrete surface significantly shortens breakover phase and decreases the vertical force in the toe region during breakover. HCHW provides adequate support to the palmar hoof structures by increasing the contact area in the heel region and incorporating the palmar part of frog and sole into weight bearing, thus decreasing the stress on the lamellae. Hoof cast with heel elevation could be a beneficial orthopaedic supportive therapy for horses suffering from acute laminitis.


Sign in / Sign up

Export Citation Format

Share Document