scholarly journals Aerosol Concentrations and Fungal Communities Within Broiler Houses in Different Broiler Growth Stages in Summer

2021 ◽  
Vol 8 ◽  
Author(s):  
Guozhong Chen ◽  
Di Ma ◽  
Qingrong Huang ◽  
Wenli Tang ◽  
Maolian Wei ◽  
...  

Fungal aerosols in broiler houses are important factors that can harm the health of human beings and broiler. To determine the composite characteristics and changes in fungal aerosols in broiler houses during different broiler growth stages in summer. We analyzed the species, concentration and particle diameter distribution characteristics of the aerosols in poultry houses using an Andersen sampler and internal transcribed spacer 1 (ITS1) high-throughput sequencing technology. The concentration of fungal aerosols in the poultry houses increased as the ages of the broiler increased, which was also accompanied by gradual increases in the variety and diversity indices of the fungal communities in the air of the poultry houses. During the entire broiler growth period, the dominant genera in the fungal aerosols in the poultry houses included Trichosporon, Candida, Aspergillus, Cladosporium and Alternaria. These fungi may be harmful to the health of poultry and human beings, so permanent monitoring of microbial air quality in chicken houses is necessary.

2018 ◽  
Vol 81 (9) ◽  
pp. 1557-1564
Author(s):  
LINLIN JIANG ◽  
JIANLONG ZHANG ◽  
JINXIU TANG ◽  
MENG LI ◽  
XIAOYU ZHAO ◽  
...  

ABSTRACT The aim of the present study was to analyze the aerosol concentrations and microbial community structures in closed cage broiler houses at different broiler growth stages to assess the dynamic pattern of microbial aerosols in closed cage systems. Our results revealed that the total concentration of bacterial aerosols gradually increased during the growth cycle of broilers. High-throughput sequencing of 16S rDNA revealed that microbial compositions differed tremendously during different growth stages, although Firmicutes and Proteobacteria were the dominant taxa in samples from all broiler growth stages. At the genus level, dominant phylotypes displayed great variation during different growth stages. Escherichia and Shigella were the most dominant taxa throughout the growth cycle, increasing from 4.3 to 12.4% as the broilers grew. The alpha index revealed that the microbial diversity displayed significant differences between the different growth stages and that the bacterial community had the highest diversity when broilers were 22 days old. High-throughput sequencing analyses revealed that environmental microbes and opportunistic pathogens had relatively high abundances during the winter growth period. The data revealed the composition and aerodynamic diameters of microbial aerosols in closed cage broiler houses at different broiler growth stages in winter. The results also enabled us to elucidate the dynamic pattern of microbial aerosols in broiler houses in response to bacterial communities. Our results may provide a basis for developing technologies for air quality control in caged poultry houses.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chaonan Wang ◽  
Yuxin Wang ◽  
Hua Ru ◽  
Ting He ◽  
Nan Sun

In this study, 16S rRNA high-throughput sequencing technology was used to analyze the composition and diversity of bacterial and fungal communities in mushroom residue samples at different composting stages. During the composting process, the maximum temperature in the center of the pile can reach 52.4°C, and the temperature above 50°C has been maintained for about 8 days. The results showed that Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, and Chloroflexi were the main microorganisms in the composting process, accounting for 98.9%-99.7% of the total bacteria. Furthermore, in order to obtain the protein expressed in each stage of composting, the nonstandard quantitative method (label free) was used to analyze it quantitatively by mass spectrometry, anda total of 22815 proteins were identified. It indicated that the number of identified proteins related to cellulose decomposition and the number of differentially expressed proteins were significantly enriched, and the functional proteins related to cellulose decomposition had significant stage correspondence.


Soil Research ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 35
Author(s):  
Lin Gao ◽  
Rui Wang ◽  
Jiaming Gao ◽  
Fangming Li ◽  
Guanghua Huang ◽  
...  

To clarify the differences between microbial communities resident in disease suppressive soil (DSS) and disease conducive soil (DCS) in tobacco cultivation, representative soil samples were collected from tobacco plantations in Shengjiaba, China, and the structure and diversity of the resident bacterial and fungal communities were analysed using high-throughput sequencing technology. Our results showed a greater number of operational taxonomic units associated with bacteria and fungi in DSS than in DCS. At the phylum level, abundances of Chloroflexi, Saccharibacteria, Firmicutes, and Planctomycetes in DSS were lower than in DCS, but abundance of Gemmatimonadetes was significantly higher. Abundances of Zygomycota and Chytridiomycota were higher in DSS than DCS, but abundance of Rozellomycota was significantly lower. At the genus level, abundances of 18 bacterial and nine fungal genera varied significantly between DSS and DCS. Relative abundances of Acidothermus, Microbacterium, Curtobacterium, and Colletotrichum were higher in DCS than DSS. The Shannon and Chao1 indices of DSS microbial communities were higher than those of DCS communities. High microbial diversity reduces the incidence of soil-borne diseases in tobacco plantations and promotes the formation of DSSs.


2021 ◽  
Author(s):  
Gang Liu ◽  
Zhizhong Gong ◽  
Jiahui Feng ◽  
Na Xu

Abstract The gut microbiota play major roles in host nutrition and metabolism, and even potential to cause serious disease for animals and human, however, the knowledge of waterbirds’ gut fungal communities are quite limited at present. In this paper, the gut fungal communities and infer the potential pathogens isolated from the feces of Anser erythropus wintering at Shengjin Lake (SJ) and Caizi Lake (CZ) were investigated based on ITS gene region by using high-throughput sequencing. 1,302,562 valid tags corresponding to 2,102 OTUs were retained from 20 fecal samples, including 10 samples per lake. The OTUs from SJ geese represented seven phyla and 27 classes, seven phyla and 28 classes were identified from CZ samples. Ascomycota, Basidiomycota, Zygomycota and Rozellomycota were the dominant gut fungal phyla in this study, accounted for 61.60%, 35.60%, 1.84%, and 0.30% of the OTUs, respectively. The alpha diversity indices showed significantly different between the geese from SJ and CZ. The Anser erythropus mainly ate Poaceae spp. at SJ, while Carex spp. component was identified at CZ, suggesting that the variations in fungal community between the two lake geese might be induced by different diets. We also observed a fungal pattern with a higher number of significant correlations to bacterial genus, and Ceratobasidium, Tomentella, Paurocotylis, Tuber, Podospora and Mortierella were core fungal genus in the two lake geese. Nine potential pathogenic species were identified in the guts across all samples of Anser erythropus at SJ and CZ, it also showed the relative abundance of potential pathogen was significantly higher from SJ samples than that from CZ samples. These findings expanded our knowledge on the gut fungi for waterbirds, indicating the fungi are highly sensitive to diet at two lakes and should pay more attention to the potential pathogenic species of Anser erythropus.


2020 ◽  
Author(s):  
Guangfei Wei ◽  
Mengzhi Li ◽  
Guozhuang Zhang ◽  
Zhongjian Chen ◽  
Fugang Wei ◽  
...  

Abstract Background: Rhizosphere microbiome play important roles in promoting plant growth. However, it is not well understood how rhizosphere microbiome were driven by medical plants during growth stages and whether they contribute the accumulation of medical values. Panax notoginseng is a perennial medicinal plant, which belowground biomass and saponin contents are the important indicators of its value. Here, we use high-throughput sequencing method to study the temporal dynamics of perennial P. notoginseng rhizosphere microbiomes and the relationship between the indicators and core rhizosphere microbiomes.Results: The results show that the diversity, composition and network structures of the bacterial and fungal communities are mainly driven by the developmental stages. And succession characteristics of bacterial and fungal diversity show similar parabolic patterns during the developmental stages. Enrichment and depletion of the bacterial and fungal communities are active at the 3-year root growth (3YR) stage. From samples collected at a large-spatial P. notoginseng production area at the 3YR stage, we obtained 639 bacterial and 310 fungal core operational taxonomic units (OTUs). Analysis of the data indicate that the microbiome diversity is related to the belowground biomass and total saponin contents. Some genera, such as Pseudomonas, Massilia, Sphingobium, and Phoma are positively correlated to the belowground biomass, and genera likely Staphylotrichum, Chaetosphaeria, and Podospora are positively correlated with total saponin contents. Additionally, we identified 36 microbial functions involving in plant-microbe and microbe-microbe interactions, nutrition acquisition, and disease resistance. They are related to belowground biomass and saponin contents. Conclusions: In short, this study provides a detailed and systematic survey of rhizosphere microbiome in P. notoginseng and reveals that P. notoginseng rhizosphere microbiomes are largely driven by the developmental stages, while the core microbiomes are related to the belowground biomass and saponins contents of the plant. The finding may enhance our understanding of the interaction between microbes and perennial plants and improve our ability to manage root microbiota for sustainable production of the herb medicine.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 172 ◽  
Author(s):  
Jelena Lazarević ◽  
Audrius Menkis

Pinus heldreichii is a high-altitude coniferous tree species naturaly occurring in small and disjuncted populations in the Balkans and southern Italy. The aim of this study was to assess diversity and composition of fungal communities in living needles of P. heldreichii specifically focusing on fungal pathogens. Sampling was carried out at six different sites in Montenegro, where 2-4 year-old living needles of P. heldreichii were collected. Following DNA isolation, it was amplified using ITS2 rDNA as a marker and subjected to high-throughput sequencing. Sequencing resulted in 31,831 high quality reads, which after assembly were found to represent 375 fungal taxa. The detected fungi were 295 (78.7%) Ascomycota, 79 (21.0%) Basidiomycota and 1 (0.2%) Mortierellomycotina. The most common fungi were Lophodermium pinastri (12.5% of all high-quality sequences), L. conigenum (10.9%), Sydowia polyspora (8.8%), Cyclaneusma niveum (5.5%), Unidentified sp. 2814_1 (5.4%) and Phaeosphaeria punctiformis (4.4%). The community composition varied among different sites, but in this respect two sites at higher altitudes (harsh growing conditions) were separated from three sites at lower altitudes (milder growing conditions), suggesting that environmental conditions were among major determinants of fungal communities associated with needles of P. heldreichii. Trees on one study site were attacked by bark beetles, leading to discolouration and frequent dieback of needles, thereby strongly affecting the fungal community structure. Among all functional groups of fungi, pathogens appeared to be an important component of fungal communities in the phyllosphere of P. heldreichii, especially in those trees under strong abiotic and biotic stress.


2021 ◽  
Vol 7 (3) ◽  
pp. 194
Author(s):  
Carmen Gómez-Lama Cabanás ◽  
Antonio J. Fernández-González ◽  
Martina Cardoni ◽  
Antonio Valverde-Corredor ◽  
Javier López-Cepero ◽  
...  

This study aimed to disentangle the structure, composition, and co-occurrence relationships of the banana (cv. Dwarf Cavendish) root endophytome comparing two phenological plant stages: mother plants and suckers. Moreover, a collection of culturable root endophytes (>1000) was also generated from Canary Islands. In vitro antagonism assays against Fusarium oxysporum f.sp. cubense (Foc) races STR4 and TR4 enabled the identification and characterization of potential biocontrol agents (BCA). Eventually, three of them were selected and evaluated against Fusarium wilt of banana (FWB) together with the well-known BCA Pseudomonas simiae PICF7 under controlled conditions. Culturable and non-culturable (high-throughput sequencing) approaches provided concordant information and showed low microbial diversity within the banana root endosphere. Pseudomonas appeared as the dominant genus and seemed to play an important role in the banana root endophytic microbiome according to co-occurrence networks. Fungal communities were dominated by the genera Ophioceras, Cyphellophora, Plecosphaerella, and Fusarium. Overall, significant differences were found between mother plants and suckers, suggesting that the phenological stage determines the recruitment and organization of the endophytic microbiome. While selected native banana endophytes showed clear antagonism against Foc strains, their biocontrol performance against FWB did not improve the outcome observed for a non-indigenous reference BCA (strain PICF7).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongwei Yan ◽  
Qi Liu ◽  
Jieming Jiang ◽  
Xufang Shen ◽  
Lei Zhang ◽  
...  

AbstractAlthough sex determination and differentiation are key developmental processes in animals, the involvement of non-coding RNA in the regulation of this process is still not clarified. The tiger pufferfish (Takifugu rubripes) is one of the most economically important marine cultured species in Asia, but analyses of miRNA and long non-coding RNA (lncRNA) at early sex differentiation stages have not been conducted yet. In our study, high-throughput sequencing technology was used to sequence transcriptome libraries from undifferentiated gonads of T. rubripes. In total, 231 (107 conserved, and 124 novel) miRNAs were obtained, while 2774 (523 conserved, and 2251 novel) lncRNAs were identified. Of these, several miRNAs and lncRNAs were predicted to be the regulators of the expression of sex-related genes (including fru-miR-15b/foxl2, novel-167, novel-318, and novel-538/dmrt1, novel-548/amh, lnc_000338, lnc_000690, lnc_000370, XLOC_021951, and XR_965485.1/gsdf). Analysis of differentially expressed miRNAs and lncRNAs showed that three mature miRNAs up-regulated and five mature miRNAs were down-regulated in male gonads compared to female gonads, while 79 lncRNAs were up-regulated and 51 were down-regulated. These findings could highlight a group of interesting miRNAs and lncRNAs for future studies and may reveal new insights into the function of miRNAs and lncRNAs in sex determination and differentiation.


2021 ◽  
Vol 692 (4) ◽  
pp. 042059
Author(s):  
Yujun Zhang ◽  
Puchang Wang ◽  
Zhongfu Long ◽  
Leilei Ding ◽  
Wen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document