scholarly journals Hardness of an Asymmetric 2-Player Stackelberg Network Pricing Game

Algorithms ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 8
Author(s):  
Davide Bilò ◽  
Luciano Gualà ◽  
Guido Proietti

Consider a communication network represented by a directed graph G=(V,E) of n nodes and m edges. Assume that edges in E are partitioned into two sets: a set C of edges with a fixed non-negative real cost, and a set P of edges whose costs are instead priced by a leader. This is done with the final intent of maximizing a revenue that will be returned for their use by a follower, whose goal in turn is to select for his communication purposes a subnetwork of Gminimizing a given objective function of the edge costs. In this paper, we study the natural setting in which the follower computes a single-source shortest paths tree of G, and then returns to the leader a payment equal to the sum of the selected priceable edges. Thus, the problem can be modeled as a one-round two-player Stackelberg Network Pricing Game, but with the novelty that the objective functions of the two players are asymmetric, in that the revenue returned to the leader for any of her selected edges is not equal to the cost of such an edge in the follower’s solution. As is shown, for any ϵ>0 and unless P=NP, the leader’s problem of finding an optimal pricing is not approximable within n1/2−ϵ, while, if G is unweighted and the leader can only decide which of her edges enter in the solution, then the problem is not approximable within n1/3−ϵ. On the positive side, we devise a strongly polynomial-time O(n)-approximation algorithm, which favorably compares against the classic approach based on a single-price algorithm. Finally, motivated by practical applications, we consider the special cases in which edges in C are unweighted and happen to form two popular network topologies, namely stars and chains, and we provide a comprehensive characterization of their computational tractability.

Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 30
Author(s):  
Pornthep Preechayasomboon ◽  
Eric Rombokas

Soft robotic actuators are now being used in practical applications; however, they are often limited to open-loop control that relies on the inherent compliance of the actuator. Achieving human-like manipulation and grasping with soft robotic actuators requires at least some form of sensing, which often comes at the cost of complex fabrication and purposefully built sensor structures. In this paper, we utilize the actuating fluid itself as a sensing medium to achieve high-fidelity proprioception in a soft actuator. As our sensors are somewhat unstructured, their readings are difficult to interpret using linear models. We therefore present a proof of concept of a method for deriving the pose of the soft actuator using recurrent neural networks. We present the experimental setup and our learned state estimator to show that our method is viable for achieving proprioception and is also robust to common sensor failures.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1486
Author(s):  
Eugene B. Caldona ◽  
Ernesto I. Borrego ◽  
Ketki E. Shelar ◽  
Karl M. Mukeba ◽  
Dennis W. Smith

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1827
Author(s):  
Mengyao Li ◽  
Yu Zhang ◽  
Ting Zhang ◽  
Yong Zuo ◽  
Ke Xiao ◽  
...  

The cost-effective conversion of low-grade heat into electricity using thermoelectric devices requires developing alternative materials and material processing technologies able to reduce the currently high device manufacturing costs. In this direction, thermoelectric materials that do not rely on rare or toxic elements such as tellurium or lead need to be produced using high-throughput technologies not involving high temperatures and long processes. Bi2Se3 is an obvious possible Te-free alternative to Bi2Te3 for ambient temperature thermoelectric applications, but its performance is still low for practical applications, and additional efforts toward finding proper dopants are required. Here, we report a scalable method to produce Bi2Se3 nanosheets at low synthesis temperatures. We studied the influence of different dopants on the thermoelectric properties of this material. Among the elements tested, we demonstrated that Sn doping resulted in the best performance. Sn incorporation resulted in a significant improvement to the Bi2Se3 Seebeck coefficient and a reduction in the thermal conductivity in the direction of the hot-press axis, resulting in an overall 60% improvement in the thermoelectric figure of merit of Bi2Se3.


1990 ◽  
Vol 27 (01) ◽  
pp. 134-145
Author(s):  
Matthias Fassbender

This paper establishes the existence of an optimal stationary strategy in a leavable Markov decision process with countable state space and undiscounted total reward criterion. Besides assumptions of boundedness and continuity, an assumption is imposed on the model which demands the continuity of the mean recurrence times on a subset of the stationary strategies, the so-called ‘good strategies'. For practical applications it is important that this assumption is implied by an assumption about the cost structure and the transition probabilities. In the last part we point out that our results in general cannot be deduced from related works on bias-optimality by Dekker and Hordijk, Wijngaard or Mann.


2005 ◽  
Vol 128 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Ho Ching ◽  
Wayne J. Book

In a conventional bilateral teleoperation, transmission delay over the Internet can potentially cause instability. A wave variable algorithm guarantees teleoperation stability under varying transmission delay at the cost of poor transient performance. Adding a predictor on the master side can reduce this undesirable side effect, but that would require a slave model. An inaccurate slave model used in the predictor as well as variations in transmission delay, both of which are likely under realistic situations, can result in steady-state errors. A direct drift control algorithm is used to drive this error to zero, regardless of the source of the error. A semi-adaptive predictor that can distinguish between free space and a rigid contact environment is used to provide a more accurate force feedback on the master side. A full adaptive predictor is also used that estimates the environmental force using recursive least squares with a forgetting factor. This research presents the experimental results and evaluations of the previously mentioned wave-variable-based methods under a realistic operation environment using a real master and slave. The algorithm proposed is innovative in that it takes advantage of the strengths of several control methods to build a promising bilateral teleoperation setup that can function under varying transmission delay, modeling error, and changing environment. Success could lead to practical applications in various fields, such as space-based remote control, and telesurgery.


Author(s):  
A. A. Heidari ◽  
M. R. Delavar

In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.


2021 ◽  
Vol 11 (3) ◽  
pp. 55-57
Author(s):  
Rani C ◽  
Harshavardhan V ◽  
Harshith G

In the 21st century online marketing is the most effective wayof advertising any product or service.Online marketing helps the smallbusinesses and also startup’sin a significant manner.online marketing happens in a virtual and interactive space where the promotion of products and services takes place. The advancement in technology has drastically changed the way of marketing. In online marketing the cost-effective compared to the traditional marketing. Most of the startup’s fail due to a lack of proper strategy.Onlinemarketing is innovativelycreating a platform for start-ups in innovative manner to reach the customers the main motto of this presentation is to show the positive side of the online marketing on start-ups and small businesses.


Author(s):  
Jinglin Liu ◽  
Yi Ren ◽  
Xu Tan ◽  
Chen Zhang ◽  
Tao Qin ◽  
...  

Non-autoregressive translation (NAT) achieves faster inference speed but at the cost of worse accuracy compared with autoregressive translation (AT). Since AT and NAT can share model structure and AT is an easier task than NAT due to the explicit dependency on previous target-side tokens, a natural idea is to gradually shift the model training from the easier AT task to the harder NAT task. To smooth the shift from AT training to NAT training, in this paper, we introduce semi-autoregressive translation (SAT) as intermediate tasks. SAT contains a hyperparameter k, and each k value defines a SAT task with different degrees of parallelism. Specially, SAT covers AT and NAT as its special cases: it reduces to AT when k=1 and to NAT when k=N (N is the length of target sentence). We design curriculum schedules to gradually shift k from 1 to N, with different pacing functions and number of tasks trained at the same time. We called our method as task-level curriculum learning for NAT (TCL-NAT). Experiments on IWSLT14 De-En, IWSLT16 En-De, WMT14 En-De and De-En datasets show that TCL-NAT achieves significant accuracy improvements over previous NAT baselines and reduces the performance gap between NAT and AT models to 1-2 BLEU points, demonstrating the effectiveness of our proposed method.


2014 ◽  
Vol 4 (4) ◽  
pp. 36-54 ◽  
Author(s):  
António Leitão ◽  
Adriano Vinhas ◽  
Penousal Machado ◽  
Francisco Câmara Pereira

Inverse Combinatorial Optimization has become a relevant research subject over the past decades. In graph theory, the Inverse Shortest Path Length problem becomes relevant when people don't have access to the real cost of the arcs and want to infer their value so that the system has a specific outcome, such as one or more shortest paths between nodes. Several approaches have been proposed to tackle this problem, relying on different methods, and several applications have been suggested. This study explores an innovative evolutionary approach relying on a genetic algorithm. Two scenarios and corresponding representations are presented and experiments are conducted to test how they react to different graph characteristics and parameters. Their behaviour and differences are thoroughly discussed. The outcome supports that evolutionary algorithms may be a viable venue to tackle Inverse Shortest Path problems.


Author(s):  
Kazuhiro Ogata

The paper describes how to formally specify three path finding algorithms in Maude, a rewriting logic-based programming/specification language, and how to model check if they enjoy desired properties with the Maude LTL model checker. The three algorithms are Dijkstra Shortest Path Finding Algorithm (DA), A* Algorithm and LPA* Algorithm. One desired property is that the algorithms always find the shortest path. To this end, we use a path finding algorithm (BFS) based on breadth-first search. BFS finds all paths from a start node to a goal node and the set of all shortest paths is extracted. We check if the path found by each algorithm is included in the set of all shortest paths for the property. A* is an extension of DA in that for each node [Formula: see text] an estimation [Formula: see text] of the distance to the goal node from [Formula: see text] is used and LPA* is an incremental version of A*. It is known that if [Formula: see text] is admissible, A* always finds the shortest path. We have found a possible relaxed sufficient condition. The relaxed condition is that there exists the shortest path such that for each node [Formula: see text] except for the start node on the path [Formula: see text] plus the cost to [Formula: see text] from the start node is less than the cost of any non-shortest path to the goal from the start. We informally justify the relaxed condition. For LPA*, if the relaxed condition holds in each updated version of a graph concerned including the initial graph, the shortest path is constructed. Based on the three case studies for DA, A* and LPA*, we summarize the formal specification and model checking techniques used as a generic approach to formal specification and model checking of path finding algorithms.


Sign in / Sign up

Export Citation Format

Share Document