scholarly journals Energy Management of a Multi-Source Power System

Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 206
Author(s):  
Omar Salah ◽  
Abdulrahim Shamayleh ◽  
Shayok Mukhopadhyay

This work focuses on energy management for a system operated by multiple energy sources which include batteries, super capacitors, a hydrogen fuel cell, and a photovoltaic cell. The overall objective is to minimize the power consumption from all sources needed to satisfy the system’s power demand by optimizing the switching between the different energy sources. A dynamic mathematical model representing the energy sources is developed taking into account the different constraints on the system, i.e., primarily the state-of-charge of the battery and the super capacitors. In addition to the model, a heuristic approach is developed and compared with the mathematical model. Both approaches were tested on a multi-energy source ground robot as a prototype. The novelty of this work is that the scheduling of an energy system consisting of four different types of sources is compared by performing analysis via dynamic programming, and a heuristic approach. The results generated using both methods are analyzed and compared to a standard mode of operation. The comparison validated that the proposed approaches minimize the average power consumption across all sources. The dynamic modeling approach performs well in terms of optimization and provided a superior switching sequence, while the heuristic approach offers the definite advantages in terms of ease of implementation and simple computation requirements. Additionally, the switching sequence provided by the dynamic approach was able to meet the power demand for all simulations performed and showed that the average power consumption across all sources is minimized.

2020 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Po-Yu Kuo ◽  
Ming-Hwa Sheu ◽  
Chang-Ming Tsai ◽  
Ming-Yan Tsai ◽  
Jin-Fa Lin

The conventional shift register consists of master and slave (MS) latches with each latch receiving the data from the previous stage. Therefore, the same data are stored in two latches separately. It leads to consuming more electrical power and occupying more layout area, which is not satisfactory to most circuit designers. To solve this issue, a novel cross-latch shift register (CLSR) scheme is proposed. It significantly reduced the number of transistors needed for a 256-bit shifter register by 48.33% as compared with the conventional MS latch design. To further verify its functions, this CLSR was implemented by using TSMC 40 nm CMOS process standard technology. The simulation results reveal that the proposed CLSR reduced the average power consumption by 36%, cut the leakage power by 60.53%, and eliminated layout area by 34.76% at a supply voltage of 0.9 V with an operating frequency of 250 MHz, as compared with the MS latch.


Author(s):  
Yogesh Shrivastava ◽  
Tarun Kumar Gupta

Ternary logic has been demonstrated as a superior contrasting option to binary logic. This paper presents a ternary subtractor circuit in which the input signal is converted into binary. The proposed design is implemented using Carbon Nanotube Field Effect Transistor (CNTFET), a forefront innovation. A correlation has been made in the proposed design on parameters like Power-Delay Product (PDP), Energy Delay Product (EDP), average power consumption, delay and static noise margin. Every one of these parameters is obtained by simulating the circuits on the HSPICE simulator. The proposed design indicates an improvement of 60.14%, 59.34%, 74.98% and 84.28%, respectively, in power consumption, delay, PDP and EDP individually in correlation with recent designs. The increased carbon nanotubes least affect the proposed subtractor design. In noise analysis, the proposed design outperformed all the existing designs.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 124 ◽  
Author(s):  
Jing Li ◽  
Yuyu Lin ◽  
Siyuan Ye ◽  
Kejun Wu ◽  
Ning Ning ◽  
...  

This paper describes a voltage controlled oscillator (VCO) based temperature sensor. The VCOs are composed of complementary metal–oxide–semiconductor (CMOS) thyristor with the advantage of low power consumption. The period of the VCO is temperature dependent and is function of the transistors’ threshold voltage and bias current. To obtain linear temperature characteristics, this paper constructed the period ratio between two different-type VCOs. The period ratio is independent of the temperature characteristics from current source, which makes the bias current generator simplified. The temperature sensor was designed in 130 nm CMOS process and it occupies an active area of 0.06 mm2. Based on the post-layout simulation results, after a first-order fit, the sensor achieves an inaccuracy of +0.37/−0.32 °C from 0 °C to 80 °C, while the average power consumption of the sensor at room temperature is 156 nW.


2012 ◽  
Vol 512-515 ◽  
pp. 1295-1298
Author(s):  
De Feng Ding ◽  
Shi Jie Liu ◽  
Chao Yu Zheng ◽  
Wen Sheng Yu ◽  
Wu Chen

A general air-source heat pump water heater originally designed to work with R134a was reconstructed as experimental rig for performance studies on systems using different refrigerants including R32, R134a and the mixture of R32/R134a which mass ratio is 1:5. Experimental results showed that the power consumption of the heat pump water heater charged individually with R32 would greatly exceed the system’s original pre-set maximum input power. When the leaving water temperature was increased from 18°C to 58°C, the average discharge temperature of the heat pump charged with R32/R134a mixture was 13.6% higher than that with R134a. The average power consumption of the heat pump with R134a was 253.5W less than that with R32/R134a mixture. However, the average COP (Coefficient of Performance) obtained by that with R32/R134a mixture was 0.83 higher than that with R134a.


Author(s):  
Pallepati Vasavi ◽  
G Raja Ramesh

As per need of recent applications, new research aspects related to scalability, heterogeneity, and power consumption have been arisen. These problems are supposed to be fixed for better utilization of MANETs. MANET nodes interact through multi-hop routing. AODV is a commonly used on-demand protocol for routing in MANETs. In the existing literature, AODV has been analyzed a number of times but heterogeneity of the nodes has not been addressed. Heterogeneity may be defined as diversity among the nodes in resources or capability. The environment is usually heterogeneous in case of constraint fluid dynamic environment of MANET. In this paper we are analyzing the routing performance as well as energy efficient behavior of AODV routing protocol in both homogeneous and heterogeneous MANETs (H-MANETs), using performance parameters like ratio of delivered packets, throughput, average delay, average power consumption, energy of alive nodes, etc. Heterogeneity has been introduced in terms of different initial energy for all the nodes, unlike the homogeneous scenario. The simulation work has been done using network simulator (NS-2). This work will be helpful to get insight of effects of heterogeneity on energy efficiency and other performance metrics of AODV.


Author(s):  
Stefan Balatchev

This paper presents the results of the testing of an oil-on-water leak detection technology for isolated locations without power or communications infrastructure. A special attention was paid to the ability of the sensors to detect hydrocarbon leaks under freezing conditions, with thick ice formed on the surface of the water. A viable solution for remote locations and large water crossings needs ultra low-power solution and/or cyclic operation. The technology evaluated was a fully passive impedance polymer-absorption sensor (PAS) featuring “zero-power” consumption. This technology also provides an additional advantage, “an event memory”, and is perfectly suitable for cyclic operation for detecting moving oil stains. In October 2017 three polymer-absorption sensors of different lengths were placed in outdoor location in Ontario, Canada for long-term testing of reliability in freezing conditions. The sensors were connected to cellular modem for generating alerts. Another battery of three sensors of same lengths was installed in outdoor testing facility near Ottawa, ON, Canada and connected to real-time data acquisition equipment. A preliminary series of leak tests performed in October/November 2017 confirmed the initial assumptions of excellent sensitivity of the hydrocarbon oil-on-water detection based on polymer absorption. The average power consumption of the sensor excitation and its measurement frontend during the first two months of testing were found to be extremely low, a fraction of the power needed for the wireless modem itself. The leak tests were extended to oil under ice detection performed with 5 North-American crude oils and with 3 refined products from Mid-December 2017 to Mid-February 2018. The sensitivity, the sensor excitation/measurement front end power consumption, and the reliability of the sensors were assessed at freezing temperatures, with thickness of the ice comprised between 80 and 100 mm. The paper also presents the availability of stand-alone communication equipment suitable for integrating oil-on-water sensors, as well the energy harvesting or energy storage technologies for different climatic conditions.


2020 ◽  
Vol 63 (2) ◽  
pp. 251-257
Author(s):  
Jing Bai ◽  
Shaochun Ma ◽  
Guangyou Yang ◽  
Fenglei Wang ◽  
Haiqian Xing ◽  
...  

Abstract. Performance tests were carried out on the primary extractor of a Chenhan 4GQ-130 sugarcane chopper harvester to improve the harvesting quality, increase the economic benefits, and reduce the harvesting cost. The tests were designed to identify the relationships of three performance indexes (impurity rate, cane loss, and power consumption) to the main influencing factors (fan speed, air speed, and feeding rate of sugarcane). Single-factor tests showed that fan speed was positively correlated with air speed and pressure. The high feeding rate of 3 kg s-1 had a higher impurity rate than the low feeding rate of 2 kg s-1. The average power consumption was higher at the high feeding rate than at the low feeding rate. However, the results of a 2 × 3 factorial experiment showed that feeding rate did not have significant effects on the impurity rate, cane loss, and power consumption (p > 0.1). It also showed that fan speed had no significant effect on the impurity rate (p > 0.1). However, at a significance level of a = 0.05, fan speed had a highly significant influence on cane loss and power consumption (p < 0.01). Compared to the feeding rate, the effect of fan speed on each performance index was more significant. Fan speed was important for the impurity rate, cane loss, and power consumption. The interaction of feeding rate and fan speed was not significant. Therefore, the optimal fan speed should be determined for a suitable feeding rate, air speed, and air pressure, which determines the extractors’ optimal performance. Keywords: Air speed and pressure, Cane loss, Fan speed, Feeding rate, Impurity rate, Power consumption.


Sign in / Sign up

Export Citation Format

Share Document