scholarly journals Damping Performance Analysis of Magnetorheological Damper Based on Multiphysics Coupling

Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 176
Author(s):  
Guoliang Hu ◽  
Lifan Wu ◽  
Yingjun Deng ◽  
Lifan Yu ◽  
Bin Luo

Magnetorheological (MR) damper performance is evaluated only by single-field analysis in the design process, which can easily lead to larger design errors. Based on this, a simulation method of MR damper considering multiphysics coupling was proposed. According to a certain automobile shock absorber requirement, an MR damper suitable for automobile suspension was designed. The mechanical model, electromagnetic field model, flow field model, and structural stress field model of the MR damper were deduced and established. To investigate the damping performance of the MR damper more accurately, the multiphysics coupling simulation model was established by COMSOL software, and coupling analysis of the electromagnetic field, flow field, and structural stress field was also carried out. The static magnetic field characteristics, dynamic flow field characteristics, stress distribution, and dynamic performance of the proposed MR damper under the action of multiphysics coupling were obtained. The simulation results show that the damping force is 1134.6 N, and the damping adjustable coefficient is 9.1 at an applied current of 1.4 A. A test system was established to analyze the dynamic performance of the MR damper, and the simulation results were compared with the experimental results. The results show that the simulated and experimental results have the same change rule. Moreover, the damping force increases with the applied current, and different external excitations have little effect on the damping force. The damper can output appropriate damping force and has a wide adjustable damping range. The experimental results illustrate that the damping force is 1200.0 N, and the damping adjustable coefficient is 10.1 when the current is 1.4 A. The error between simulation and experiment of the damping force and damping adjustable coefficient is only 5.5% and 9.9%, respectively.

2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


2013 ◽  
Vol 427-429 ◽  
pp. 302-307
Author(s):  
S.H. Zou ◽  
J. Zhang ◽  
L. Gao ◽  
H. Gao ◽  
Ya Ping Wang

Emulate and analyze the flow field of whole-quantity-type safety valve using CFX. Establish the test system of whole-quantity-type safety valve. Compare the simulation results and the experimental results. Verify the accuracy of the simulation results. Provide a theoretical basis for structural innovation and fault diagnosis of whole-quantity-type safety valve.


2005 ◽  
Vol 128 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Huan Lin ◽  
Solomon C. S. Yim

Complex responses observed in an experimental, nonlinear, moored structural system subjected to nearly periodic wave excitations are examined and compared to the simulations of a newly proposed independent-flow-field (IFF) model in this paper. Variations in wave heights are approximated by additive random perturbations to the dominant periodic component. Simulations show good agreement with the experimental results in both time and frequency domains. Noise effects on the experimental results, including bridging and transition phenomena, are investigated and interpreted by comparing to the simulations of its deterministic counterpart. Possible causes of a chaoticlike experimental result as previously observed are also inferred.


Author(s):  
Q. Ouyang ◽  
J. Wang ◽  
J. J. Zheng ◽  
X. J. Wang ◽  
Y. Xi

Magnetorheological (MR) fluids contain suspensions that exhibit a rapid, reversible and tunable transition from a free-flowing state to a semi-solid state upon the application of an external magnetic field. This behavior has attracted significant attention in the development of dampers, shock absorption system, military and defence system and safety devices in aerospace engineering. However, many of the issues pertaining to MR damper behavior in impact and shock applications are relatively unknown. This study provides an experimental analysis and simulation analysis by using COMSOL multyphysics of MR dampers when they are subjected to impact and shock loading. To this end, a novel MR damper with a four-stage piston and independent input currents is designed and analyzed. In this paper, two-dimension symmetrical Computational Fluid Dynamics (CFDs) simulation for the laminar flow of an incompressible MR fluid in the annular gap in the presence of a varying magnetic field. The purpose of this research is to study the couple effect of electromagnetic field and the fluid flow field and magnitude of damping force in a macroscopic view. The governing differential equations describing the magnetic field and fluid flow in the annular gap are solved numerically by COMSOL Multiphysics. Through the electromagnetic analysis and flow field analysis, the coupling effect of the magnetic field between the coil and the multiphysics coupling effect of novel MR was be found. For the each coil has an independent power supply, so it can provide a wider range damping force by combining the electromagnetic field of coils.


Author(s):  
Huan Lin ◽  
Solomon C. S. Yim

Complex responses observed in an experimental, nonlinear, moored structural system subjected to nearly periodic wave excitations are examined and compared with the simulations of a newly proposed independent-flow-field (IFF) model in this paper. Variations in wave heights are approximated by additive random perturbations to the dominant periodic component. Simulations show good agreement with the experimental results in both time and frequency domains. Noise effects on the experimental results including bridging and transition phenomena are investigated and interpreted by comparing with the simulations of its deterministic counterpart. Possible causes of a chaotic-like experimental result as previously observed are also inferred.


1999 ◽  
Author(s):  
Mehdi Ahmadian

Abstract The design and fabrication of a magneto rheological (MR) damper for bicycle suspension applications is addressed. Two 1998 Judy® Dampers are retrofitted with MR valves, to achieve the damping force adjustability that the MR fluid offers. One design attempts to use as many of the Judy® Damper components as possible. The second design significantly modifies the Judy® Damper, to better accommodate the MR valve and ease of fabrication and assembly, although fitting into the same envelope as the Judy® damper for a direct retrofit. The two MR dampers are fabricated and assembled for force-velocity characterization testing. The test results show that properly-designed MR dampers can provide significant dynamic performance improvements, as compared to conventional passive bicycle dampers.


2015 ◽  
Vol 789-790 ◽  
pp. 913-917 ◽  
Author(s):  
Syabillah Sulaiman ◽  
Pakharuddin Mohd Samin ◽  
Hishamuddin Jamaluddin ◽  
Roslan Abd Rahman ◽  
Saiful Anuar Abu Bakar

This paper proposed semi active controller scheme for magnetorheological (MR) damper of a heavy vehicle suspension known as Ground Semi Active Damping Force Estimator (gSADE), where it was modified from Semi Active Damping Force Estimator (SADE) algorithm. A reported algorithm known as Groundhook (GRD) was developed where its aim to minimize tire road forces and hence reduce road damage. Thus, the objective of this paper is to investigate the effectiveness of the proposed gSADE algorithm compared to GRD and SADE. These algorithms are applied to a quarter heavy vehicle models and the simulation model was developed and simulated using MATLAB Simulink software. Ride test was conducted at three different speeds and three bump heights, and the simulation results of gSADE, SADE and GRD are compared and analysed. The results showed that the proposed controller is able to reduced tire force significantly compared to GRD control strategy.


2013 ◽  
Vol 681 ◽  
pp. 209-213
Author(s):  
Xin Jian Ma ◽  
Jun Jie Tan ◽  
Deng Feng Ren ◽  
Fang Wang

In order to investigate the calculation ability of meshless method and calculation precision for lift and drag force coefficient based on N-S equations with S-A turbulence model and Euler equations, numerical simulation of flow field around the DLR-F4 wing-body, supplied by the AIAA Drag Prediction Workshop, is employed using meshless method. Furthermore, the calculated results are compared with experiment results and Waller’s simulation results achieved by MGAERO software. It’s found that the present simulation results without consideration of fluid viscosity don’t agree well with Waller’s and experimental results. The present simulation results with consideration of fluid viscosity were found to be in good agreement with experimental results. These results indicate that meshless method coupled with S-A turbulence model could predict the natural flow characteristic around the DLR-F4 wing-body configuration well.


2021 ◽  
Vol 64 (2) ◽  
pp. 425-434
Author(s):  
Xueli Chen ◽  
Zhengying Wei ◽  
Caixiang Wei ◽  
Jinpeng Ma ◽  
Zhuo Chen

HighlightsDeformation of the elastic diaphragm can affect the flow field characteristics of a pressure-compensating emitter.The contact constraint method’s simulation of the elastic diaphragm were consistent with its actual deformation.The contact constraint method can reduce the relative errors between simulated and experimental results.Abstract. Numerical simulation is an important method for revealing the working principle and optimizing the design of drip emitters. The hydraulic performance of pressure-compensating (PC) emitters is determined by the interaction between the elastic diaphragm and the flow field; therefore, correct deformation of the elastic diaphragm is one of the factors determining the accuracy of numerical simulation of PC emitters. This study investigated the effects of three constraint methods of the elastic diaphragm on the numerical simulation of PC emitters. The three methods were fully fixed constraint (FFC), upper surface fixed constraint (UFC), and contact constraint (CC). Fluid-structure interaction (FSI) simulation was used to analyze the deformation characteristics of the elastic diaphragm, the flow field characteristics, and the flow rate of the PC emitter. The simulated diaphragm deformation and flow rates were compared with the results of a visual experiment and a hydraulic performance experiment, respectively. The simulation results showed that the constraint method affected the diaphragm deformation and flow field of the PC emitter. In comparing the simulation results with the experimental results, the CC method had the highest accuracy among the three constraint methods, but an extremely long computation time was required. The FFC method had the lowest accuracy but required less computation time. The accuracy of the UFC method was lower than CC and higher than FFC, but its computation time decreased by 60.03% compared with CC. This study provides a foundation for further research on the numerical simulation and design of PC emitters. Keywords: Constraint method, Deformation characteristics, Flow field characteristics, Fluid-structure interaction, Visual experiment.


2014 ◽  
Vol 660 ◽  
pp. 863-867
Author(s):  
Izyan Iryani Mohd Yazid ◽  
Saiful Amri Mazlan ◽  
Takehito Kikuchi ◽  
Hairi Zamzuri

This paper presents performance comparison of Magnetorheological (MR) damper with two different coil arrangements. Two coils at different location have been introduced that could enhance the activation areas in the MR damper. The experimental tests were conducted in three different conditions of coil; internal coils, external coils and the combination of coils. For each trial, the effect of the applied current and the condition of coils were analyzed and investigated. The results showed that the internal coil could produce higher damping force than the external coil, and the combination of internal and external coils could increase the damping force up to 125 N for the same experimental parameters.


Sign in / Sign up

Export Citation Format

Share Document