scholarly journals Computational Evaluation of Aerodynamic Loading on Retractable Landing-Gears

Aerospace ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 68 ◽  
Author(s):  
Giuliano De Stefano ◽  
Nunzio Natale ◽  
Giovanni Paolo Reina ◽  
Antonio Piccolo

Computational fluid dynamics is employed to evaluate the mean aerodynamic loading on the retractable landing-gears of a regional transport commercial aircraft. The mean turbulent flow around simplified landing-gear systems including doors is simulated by using the Reynolds-averaged Navier–Stokes approach, where the governing equations are solved with a finite volume-based numerical method. Using a dynamic meshing method, the computational grid is automatically and continuously adapted to the time-changing geometry, while following the extension/retraction of the landing-gear systems. The temporal evolution of the aerodynamic forces on both the nose and the main landing-gears, along with the hinge moments of the doors, is numerically predicted. The proposed computational modeling approach is verified to have good practical potential when compared with reference experimental data provided by the Leonardo Aircraft structural loads group.

2021 ◽  
Vol 11 (11) ◽  
pp. 4934
Author(s):  
Viola Rossano ◽  
Giuliano De Stefano

Computational fluid dynamics was employed to predict the early stages of the aerodynamic breakup of a cylindrical water column, due to the impact of a traveling plane shock wave. The unsteady Reynolds-averaged Navier–Stokes approach was used to simulate the mean turbulent flow in a virtual shock tube device. The compressible flow governing equations were solved by means of a finite volume-based numerical method, where the volume of fluid technique was employed to track the air–water interface on the fixed numerical mesh. The present computational modeling approach for industrial gas dynamics applications was verified by making a comparison with reference experimental and numerical results for the same flow configuration. The engineering analysis of the shock–column interaction was performed in the shear-stripping regime, where an acceptably accurate prediction of the interface deformation was achieved. Both column flattening and sheet shearing at the column equator were correctly reproduced, along with the water body drift.


Aerospace ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 139
Author(s):  
Nunzio Natale ◽  
Teresa Salomone ◽  
Giuliano De Stefano ◽  
Antonio Piccolo

Computational fluid dynamics is employed to predict the aerodynamic properties of the prototypical trailing-edge control surfaces for a small, regional transport, commercial aircraft. The virtual experiments are performed at operational flight conditions, by resolving the mean turbulent flow field around a realistic model of the whole aircraft. The Reynolds-averaged Navier–Stokes approach is used, where the governing equations are solved with a finite volume-based numerical method. The effectiveness of the flight control system, during a hypothetical conceptual pre-design phase, is studied by conducting simulations at different angles of deflection, and examining the variation of the aerodynamic loading coefficients. The proposed computational modeling approach is verified to have good practical potential, also compared with reference industrial data provided by the Leonardo Aircraft Company.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


2012 ◽  
Vol 204-208 ◽  
pp. 4971-4977
Author(s):  
Ya Mei Lan ◽  
Wen Hua Guo ◽  
Yong Guo Li

The CFD software FLUENT was used as the foundation to develop the numerical wave flume, in which the governing equations are the Reynolds-averaged Navier-Stokes (RANS) equations and the standard k~ε turbulence model. The wave generating and absorbing were introduced into the RANS equations as the source terms using the relaxation approach. A new module of the wave generating and absorbing function, which is suitable for FLUENT based on the volume of fluid method (VOF), was established. Within the numerical wave flume, the reflected waves from the model within the computation domain can be absorbed effectively before second reflection appears due to the wave generating boundary. The computational results of the wave pressures on the bottom of the rectangular slab were validated for the different relative clearance by the experimental data. Good agreements were found.


2002 ◽  
Vol 124 (2) ◽  
pp. 413-423 ◽  
Author(s):  
L. S. Hedges ◽  
A. K. Travin ◽  
P. R. Spalart

The flow around a generic airliner landing-gear truck is calculated using the methods of Detached-Eddy Simulation, and of Unsteady Reynolds-Averaged Navier-Stokes Equations, with the Spalart-Allmaras one-equation model. The two simulations have identical numerics, using a multi-block structured grid with about 2.5 million points. The Reynolds number is 6×105. Comparison to the experiment of Lazos shows that the simulations predict the pressure on the wheels accurately for such a massively separated flow with strong interference. DES performs somewhat better than URANS. Drag and lift are not predicted as well. The time-averaged and instantaneous flow fields are studied, particularly to determine their suitability for the physics-based prediction of noise. The two time-averaged flow fields are similar, though the DES shows more turbulence intensity overall. The instantaneous flow fields are very dissimilar. DES develops a much wider range of unsteady scales of motion and appears promising for noise prediction, up to some frequency limit.


1997 ◽  
Vol 52 (4) ◽  
pp. 358-368 ◽  
Author(s):  
Michio Nishida ◽  
Masashi Matsumotob

Abstract • This paper describes a computational study of the thermal and chemical nonequilibrium occuring in a rapidly expanding flow of high-temperature air transported as a free jet from an orifice into low-density stationary air. Translational, rotational, vibrational and electron temperatures are treated separately, and in particular the vibrational temperatures are individually treated; a multi-vibrational temperature model is adopted. The governing equations are axisymmetric Navier-Stokes equations coupled with species vibrational energy, electron energy and species mass conservation equations. These equations are numerically solved, using the second order upwind TVD scheme of the Harten-Yee type. The calculations were carried out for two different orifice temperatures and also two different orifice diameters to investigate the effects of such parameters on the structure of a nonequilibrium free jet.


2013 ◽  
Vol 291-294 ◽  
pp. 1949-1953
Author(s):  
Yu Feng Tian ◽  
Yan Huang

The interactions between waves and the pendulum wave power converter were simulated, considering Navier-Stokes (N-S) equations as governing equations of the fluid, using the k-ε turbulence model and finite element software ADINA. The setting wave-generating boundary method and viscosity damping region method were developed in the numerical wave tank. Nodal velocities were applied on each layer of the inflow boundary in the setting wave-generating boundary method. The viscosity of the fluid in the damping region was obtained artificially in the viscosity damping region method, and the energy in the fluid was decreased by the viscosity in governing equations. The physical model tests were simulated with the fluid-structure interaction (FSI) numerical model. The numerical results were compared with the experimental data, and then the results were discussed. A reference method is advanced to design the pendulum wave power converter. The method to solve the complex FSI problems is explored.


Author(s):  
Wolfgang Höhn

During the design of the compressor and turbine stages of today’s aeroengines, aerodynamically induced vibrations become increasingly important since higher blade load and better efficiency are desired. In this paper the development of a method based on the unsteady, compressible Navier-Stokes equations in two dimensions is described in order to study the physics of flutter for unsteady viscous flow around cascaded vibrating blades at stall. The governing equations are solved by a finite difference technique in boundary fitted coordinates. The numerical scheme uses the Advection Upstream Splitting Method to discretize the convective terms and central differences discretizing the viscous terms of the fully non-linear Navier-Stokes equations on a moving H-type mesh. The unsteady governing equations are explicitly and implicitly marched in time in a time-accurate way using a four stage Runge-Kutta scheme on a parallel computer or an implicit scheme of the Beam-Warming type on a single processor. Turbulence is modelled using the Baldwin-Lomax turbulence model. The blade flutter phenomenon is simulated by imposing a harmonic motion on the blade, which consists of harmonic body translation in two directions and a rotation, allowing an interblade phase angle between neighboring blades. Non-reflecting boundary conditions are used for the unsteady analysis at inlet and outlet of the computational domain. The computations are performed on multiple blade passages in order to account for nonlinear effects. A subsonic massively stalled unsteady flow case in a compressor cascade is studied. The results, compared with experiments and the predictions of other researchers, show reasonable agreement for inviscid and viscous flow cases for the investigated flow situations with respect to the Steady and unsteady pressure distribution on the blade in separated flow areas as well as the aeroelastic damping. The results show the applicability of the scheme for stalled flow around cascaded blades. As expected the viscous and inviscid computations show different results in regions where viscous effects are important, i.e. in separated flow areas. In particular, different predictions for inviscid and viscous flow for the aerodynamic damping for the investigated flow cases are found.


2012 ◽  
Vol 33 (1) ◽  
pp. 67-86
Author(s):  
Włodzimierz Wróblewski ◽  
Sławomir Dykas ◽  
Tadeusz Chmielniak

Models for water steam condensing flows The paper presents a description of selected models dedicated to steam condensing flow modelling. The models are implemented into an in-house computational fluid dynamics code that has been successfully applied to wet steam flow calculation for many years now. All models use the same condensation model that has been validated against the majority of available experimental data. The state equations for vapour and liquid water, the physical model as well as the numerical techniques of solution to flow governing equations have been presented. For the single-fluid model, the Reynolds-averaged Navier-Stokes equations for vapour/liquid mixture are solved, whereas the two-fluid model solves separate flow governing equations for the compressible, viscous and turbulent vapour phase and for the compressible and inviscid liquid phase. All described models have been compared with relation to the flow through the Laval nozzle.


Sign in / Sign up

Export Citation Format

Share Document