scholarly journals Arthropod Diversity Influenced by Two Musa-Based Agroecosystems in Ecuador

Agriculture ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 235
Author(s):  
Daniel Vera-Aviles ◽  
Carmita Suarez-Capello ◽  
Mercè Llugany ◽  
Charlotte Poschenrieder ◽  
Paola De Santis ◽  
...  

Banana and plantain (Musa spp.) are very important crops in Ecuador. Agricultural production systems based on a single cultivar and high use of external inputs to increase yields may cause changes in the landscape structure and a loss in biodiversity. This loss may be responsible for a decrease in the complexity of arthropod food webs and, at the same time, related to a higher frequency and range of pest outbreaks. Very little is known either about the ecological mechanisms causing destabilization of these systems or the importance of the diversity of natural enemies to keep pests under control. Few studies have focused on this issue in tropical ecosystems. Here, we address this problem, comparing two Musa-based agroecosystems (monocultivar and mixed-species plantations) at two sites in Ecuador (La Maná and El Carmen) with different precipitation regimes. The diversity of soil macro fauna, represented by arthropods, was established, as indicators of the abovementioned disturbances. Our ultimate goal is the optimization of pest management by exploring more sustainable cropping systems with improved soil quality. Arthropod abundance was higher in the mixed system at both localities, which was clearly associated with the quality of the soils. In addition, we found Hymenoptera species with predatory or parasitic characteristics over the pests present in the agroecosystems under study. These highly beneficial species were more abundant at the locality of La Maná. The mixed type of production system provides plant diversity, which favors beneficial arthropod abundance and permits lower agrochemical application without yield penalties in comparison to the monoculture. These findings will help in the design of Musa-based agroecosystems to enhance pest control.

2021 ◽  
Vol 13 (19) ◽  
pp. 11123
Author(s):  
Olfa Gharsallah ◽  
Claudio Gandolfi ◽  
Arianna Facchi

The intensification of agricultural production is connected to the increased use of fertilizers, pesticides, irrigation water, and energy. Among all cropping systems, rice cultivation is considered to be one of the most significant sources of environmental harm due to the flooding conditions in which rice normally grows; at the same time, rice has important economic and social implications, especially in areas where it is a staple food. In the last 20 years, sustainable development of agricultural production has become a priority for scientific research and policy programs. Several studies proposed methodological frameworks to assess the impacts of different management practices adopted in agro-ecosystems and to identify strategies to mitigate the negative effects of agricultural intensification. Such methodologies are based on the use of particular indicators, which are increasingly seen as crucial tools in impact assessment studies and for decision making. This paper aims to review and analyze the most significant methodological frameworks developed to assess the sustainability of agricultural production systems, with a particular focus on rice cultivation. The analysis includes highlighting which dimensions of sustainability (economic, environmental, social, and governance) are covered by each method and identifying which indicators are used to describe the different dimensions. The spatial scale of the application of the indicators, their typology, the data needed for their implementation, and the criteria for formulating the overall sustainability judgment were then examined. The analysis highlighted the scarce availability of clear operational data for the calculation of the indicators and the often-limited involvement of stakeholders in the development and implementation of the methodologies. The exceptions to these limitations are represented by a few methodologies developed under the umbrella of important international organizations to promote sustainability and research efficiency in specific agricultural production systems, such as the SRP (sustainable rice platform) for rice. Finally, the analysis shows that there is a need to develop methodologies that are applicable not only to an individual farm or group of farms, but also at larger spatial scales (district, watershed, region), which are often those of greatest interest to decision makers.


2017 ◽  
Vol 95 (suppl_4) ◽  
pp. 182-183
Author(s):  
P. A. C. Luz ◽  
C. Andrighetto ◽  
G. C. Lupatini ◽  
H. S. Aranha ◽  
A. S. Aranha ◽  
...  

2018 ◽  
Vol 16 ◽  
pp. 54-64 ◽  
Author(s):  
Jessica R. Bogard ◽  
Geoffrey C. Marks ◽  
Stephen Wood ◽  
Shakuntala H. Thilsted

2016 ◽  
Vol 29 (5) ◽  
pp. 70
Author(s):  
Róger Martínez-Castillo

<p class="p1">Sustainable development is based on ethical principles such as respect for and harmony with nature, political values such as participative democracy and social equity, and moral norms such as environmental rationality. Sustainable development is egalitarian, neutral, and self-managed, able to satisfy the basic needs of people, respecting cultural diversity, and improving the quality of life. The concepts of agriculture and sustainable development refer to the need of minimizing degradation of fertile land, while working to increase production. They include agricultural activities such as soil and water management, crop management, and the conservation of biodiversity, taking into account the provision of food and raw materials. Sustainability of agricultural production systems refers to the capacity of the system to maintain its productivity in spite of economic and natural, external or internal limitations. Sustainability is a function of the natural features of a system and the pressures and interventions it experiences, as well as social, economic, and technical interventions that are carried out in order to fight negative pressures, highlighting the resiliency of the system. </p>


2018 ◽  
Vol 2 (95) ◽  
pp. 69-72
Author(s):  
Yu.A. Tarariko ◽  
L.V. Datsko ◽  
M.O. Datsko

The aim of the work is to assess the existing and prospective models for the development of agricultural production in Central Polesie on the basis of economic feasibility and ecological balance. The evaluation of promising agricultural production systems was carried out with the help of simulation modeling of various infrastructure options at the levels of crop and multisectoral specialization of agroecosystems. The agro-resource potential of Central Polesie is better implemented in the rotation with lupine, corn and flax dolguntsem with well-developed infrastructure, including crop, livestock units, grain processing and storage systems, feed, finished products and waste processing in the bioenergetic station. The expected income for the formation of such an infrastructure is almost 8 thousand dollars. / with a payback period of capital investments of 2-3 years.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2017 ◽  
Vol 32 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Stephen B. Powles

AbstractIn Australia, widespread evolution of multi-resistant weed populations has driven the development and adoption of harvest weed seed control (HWSC). However, due to incompatibility of commonly used HWSC systems with highly productive conservation cropping systems, better HWSC systems are in demand. This study aimed to evaluate the efficacy of the integrated Harrington Seed Destructor (iHSD) mill on the seeds of Australia’s major crop weeds during wheat chaff processing. Also examined were the impacts of chaff type and moisture content on weed seed destruction efficacy. Initially, the iHSD mill speed of 3,000 rpm was identified as the most effective at destroying rigid ryegrass seeds present in wheat chaff. Subsequent testing determined that the iHSD mill was highly effective (>95% seed kill) on all Australian crop weeds examined. Rigid ryegrass seed kill was found to be highest for lupin chaff and lowest in barley, with wheat and canola chaff intermediate. Similarly, wheat chaff moisture reduced rigid ryegrass seed kill when moisture level exceeded 12%. The broad potential of the iHSD mill was evident, in that the reductions in efficacy due to wide-ranging differences in chaff type and moisture content were relatively small (≤10%). The results from these studies confirm the high efficacy and widespread suitability of the iHSD for use in Australian crop production systems. Additionally, as this system allows the conservation of all harvest residues, it is the best HWSC technique for conservation cropping systems.


Sign in / Sign up

Export Citation Format

Share Document