scholarly journals Multi-Allelic Haplotype-Based Association Analysis Identifies Genomic Regions Controlling Domestication Traits in Intermediate Wheatgrass

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 667
Author(s):  
Prabin Bajgain ◽  
James A. Anderson

Intermediate wheatgrass (IWG) is a perennial forage grass undergoing a rigorous domestication as a grain crop. As a young grain crop, several agronomic and domestication traits need improvement for IWG to be relevant in current agricultural landscapes. This study genetically maps six domestication traits in the fourth cycle IWG breeding population at the University of Minnesota: height, seed length, seed width, shattering, threshability, and seed mass. A weak population structure was observed and linkage disequilibrium (r2) declined rapidly: 0.23 mega base pairs at conventional r2 value of 0.2. Broad-sense heritabilities were overall high and ranged from 0.71–0.92. Association analysis was carried out using 25,909 single SNP markers and 5379 haplotype blocks. Thirty-one SNP markers and 17 haplotype blocks were significantly associated with the domestication traits. These associations were of moderate effect as they explained 4–6% of the observed phenotypic variation. Ten SNP markers were also detected by the haplotype association analysis. One SNP marker on Chromosome 8, also discovered in haplotype block analysis, was common between seed length and seed mass. Increasing the frequency of favorable alleles in IWG populations via marker-assisted selection and genomic selection is an effective approach to improve IWG’s domestication traits.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gehendra Bhattarai ◽  
Wei Yang ◽  
Ainong Shi ◽  
Chunda Feng ◽  
Braham Dhillon ◽  
...  

Abstract Background Downy mildew, the most devastating disease of spinach (Spinacia oleracea L.), is caused by the oomycete Peronospora effusa [=P. farinosa f. sp. spinaciae]. The P. effusa shows race specificities to the resistant host and comprises 19 reported races and many novel isolates. Sixteen new P. effusa races were identified during the past three decades, and the new pathogen races are continually overcoming the genetic resistances used in commercial cultivars. A spinach breeding population derived from the cross between cultivars Whale and Lazio was inoculated with P. effusa race 16 in an environment-controlled facility; disease response was recorded and genotyped using genotyping by sequencing (GBS). The main objective of this study was to identify resistance-associated single nucleotide polymorphism (SNP) markers from the cultivar Whale against the P. effusa race 16. Results Association analysis conducted using GBS markers identified six significant SNPs (S3_658,306, S3_692697, S3_1050601, S3_1227787, S3_1227802, S3_1231197). The downy mildew resistance locus from cultivar Whale was mapped to a 0.57 Mb region on chromosome 3, including four disease resistance candidate genes (Spo12736, Spo12784, Spo12908, and Spo12821) within 2.69–11.28 Kb of the peak SNP. Conclusions Genomewide association analysis approach was used to map the P. effusa race 16 resistance loci and identify associated SNP markers and the candidate genes. The results from this study could be valuable in understanding the genetic basis of downy mildew resistance, and the SNP marker will be useful in spinach breeding to select resistant lines.


2018 ◽  
Vol 14 (2) ◽  
pp. 75
Author(s):  
Muhamad Yunus ◽  
Diani Damayanti ◽  
Ahmad Dadang ◽  
Ahmad Warsun ◽  
Dani Satyawan ◽  
...  

<p>Brown planthopper (BPH) is a major rice pest in Indonesia. The most economical and effective approach to control the insect pest is by using resistant varieties. Exploring for resistance genes is, therefore, a prerequisite for effective breeding program for BPH resistance. This study aimed to map BPH resistance genes in Untup Rajab, an Indonesian local rice variety. Genetic map was constructed using an F2 population from a cross between TN-1 and Untup Rajab, and SNP markers from RiceLD SNP Chip. Phenotyping was performed using bulk seedling test on F2:3 seedlings against two BPH populations, i.e. X1 and S1. Four QTLs<br />were identified on chromosomes 5, 6, 8, and 11 with PVE values of 7.63%, 9.40%, 17.66%, and 3.05%, respectively. Relatively normal distribution of resistance phenotype and the relatively low PVE values indicate that Untup Rajab has a quantitative resistance to BPH with two different resistance loci identified for each BPH test population. The QTL on chromosome 8 overlaps with OsHI-LOX gene, which is associated with resistance to BPH, and adjacent to another QTL for resistance to green leafhopper. The QTL on chromosome 6 was found near OsPLDα4 and OsPLDα5 genes which are related to BPH resistance. Meanwhile, the QTL intervals on chromosome 5 and 11 did not overlap with any known BPH QTLs or genes, which make them attractive candidates for novel BPH resistance gene discovery.</p>


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3653-3653
Author(s):  
Rami Khoriaty ◽  
Lukasz P. Gondek ◽  
Bartlomiej P Przychodzen ◽  
Theodore Ghazal ◽  
Abdo Haddad ◽  
...  

Abstract Introduction: The myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell disorders. Ringed sideroblasts (RS) are found in the following subclasses of MDS: refractory anemia with ringed sideroblasts (RARS), refractory cytopenia with multilineage dysplasia and ringed sideroblasts (RCMD-RS), and refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T). The objective of this study was to evaluate the use of single nucleotide polymorphism (SNP) arrays (SNP-A) in patients with MDS and RS and specifically to compare chromosomal abnormalities detected by metaphase karyotyping (MC) with those detected using high-resolution SNP based karyotyping (which can detect unbalanced genomic lesions in addition to copy-neutral loss of heterozygozity) and to conduct a disease association analysis using the SNP-A. Methods: We reviewed the electronic records of patients with MDS and RS seen at our institution between 2002 and 2008. DNA was extracted using the Puregene DNA Purification Kit. Gene Chip Mapping 250K Assay Kit (Affymetrix) was used. Signal intensity and genotype calls were analyzed using CNAG v.3.0. For the disease association analysis, the Fisher’s p-value was used to compare SNPs found in patients with MDS and RS versus 150 normal controls. Results: 83 patients with MDS who have RS were identified. 40 (48%) had RARS, 25 (30%) had RCMD-RS, and 18 (22%) had RARS-T. The mean age of these patients was 70.7 years, 53 patients (64%) were males, and 70 (84%) were Caucasian. Of those 83 patients, 45 had available DNA for SNP analysis, 23 (51%) of whom had RARS, 11 (24%) had RCMD-RS, and 11 (24%) had RARS-T. The mean age of these 45 patients was 69.9 years, 29 (64%) were males, and 39 (87%) were Caucasian. By MC, 20/45 (44.5%) patients had abnormal karyotypes and 25/45 (55.5%) patients had normal karyotypes. Using SNP-A, chromosomal abnormalities including UPD were identified in 29/45 (64.5%) of patients. Of the 25 pts who had normal karyotypes by MC, 11 (44%) had abnormal karyotypes by SNP-A. The chromosomal distributions of the lesions detected by MC were as follows: chromosome 5 (18.4%), chromosome 7 (15.8%), chromosome 8 (13.1%), chromosome 17, 18, 19, 20, 21 (5.2% in each), and others (26.3 % in total). The distribution of chromosomal lesions detected by SNP-array analysis (excluding UPD) was as follows: chromosome 8 (18.7 %), chromosome 5 (14.6%), chromosome 7 (12.5%), chromosome 17 (10.4%), chromosome 20 (8.3%), chromosome 4 (6.2%), chromosomes 2, 3, 13, 22 (4.1% each), and others (12.5% in total). UPD was found in 12/45 (26.7%) patients mostly affecting chromosome 1 (27.8%). A large number of SNPs were found to be significantly more prevalent in patients with MDS with RS than in controls (with p-value < 0.0001). Genes within 50 kb from these SNPs were scrutinized. At least 11 of those genes (RP1, LIMD1, CHL1, ATP6V1F, TEAD2, SPTLC2, CDH13, DIAPH2, DLEU2, FAM10A4, TRPM8) are known to be related to cancer in the literature. Given that karyotypic abnormalities were more prevalent in chromosomes 8, 5, and 7, we looked specifically at the SNPs in those chromosomes which were significantly associated with disease (rs 409429, rs 446153, rs 453186 and rs 509273 in chromosome 8; rs6891109 in chromosome 5; and rs6970371 in chromosome 7). The genes within 50 kb of these SNPs that are known to be associated with cancer are: RP1 in chromosome 8 (colon cancer), and ATP6V1F in chromosome 7 (prostate cancer). Conclusion: This study shows that SNP-A based karyotyping is a useful tool for karyotyping and can detect more chromosomal abnormalities than MC (64.5 versus 44.5%, odds ratio 1.45). We also found that about half of the patients who had normal karyotypes by MC were found to have karyotypic abnormalities by SNP-A. In addition, we show multiple candidate genes that could be important in the pathogenesis of MDS with RS.


2021 ◽  
Author(s):  
Corentin Clement ◽  
Joost Sleiderink ◽  
Simon Fiil Svane ◽  
Abraham George Smith ◽  
Efstathios Diamantopoulos ◽  
...  

Abstract AimsWater is the most important yield-limiting factor worldwide and drought is predicted to increase in the future. Perennial crops with more extensive and deep root systems could access deep stored water and build resilience to water shortage. In the context of human nutrition, perennial grain crops are very interesting. However, it is still questionable whether they are effective in using subsoil water. We compared intermediate wheatgrass (Kernza®) Thinopyrum intermedium, a perennial grain crop, to alfalfa Medicago sativa, a perennial forage, for subsoil root growth and water uptake.MethodsUsing TDR sensors, deuterium tracer labelling, minirhizotrons and the Hydrus-1D model we characterised the root distribution and water uptake patterns of these two perennial crops during two cropping seasons under field conditions down to 2.5 m soil depth.ResultsBoth crops grew roots down to 2.0 m depth that were active in water uptake but alfalfa was deeper rooted than intermediate wheatgrass. All experimental methods concluded that alfalfa used more water from below 1.0 m depth than intermediate wheatgrass. However, simulations predicted that intermediate wheatgrass used more than 20 mm of water after anthesis from below 1 m soil depth. Simulations confirmed the advantage of deep roots in accessing deep soil water under drought.ConclusionsIn regions with high groundwater recharge, growing deep-rooted perennial crops have great potential to exploit deep soil water that is often left unused. However, the road to a profitable perennial grain crop is still long and breeding intermediate wheatgrass (Kernza®) cultivars for increased root growth at depth seems to be a worthy investment for the development of more drought tolerant cultivars.


Genomics ◽  
2021 ◽  
Author(s):  
ModhumitaGhosh Dasgupta ◽  
Abdul Bari Muneera Parveen ◽  
Senthilkumar Shanmugavel ◽  
Veeramuthu Dharanishanthi ◽  
Muthusamy Muthupandi ◽  
...  

2020 ◽  
Vol 18 (4) ◽  
pp. 423-432
Author(s):  
Olga V. Mitrofanova ◽  
Natalia V. Dementieva ◽  
Elena S. Fedorova ◽  
Marina V. Pozovnikova ◽  
Valentina I. Tyshchenko ◽  
...  

Objective. To assess the variability of egg production traits for nine SNPs, to search for traces of selection in the genome of Russian white chickens based on ROH patterns. Methods. The material for the study was DNA isolated from the blood of Russian white chickens (n = 141). Nine SNPs associated with egg production at p 5.16 105 according to GWAS data were selected for analysis. The frequencies of alleles and genotypes, the relationship between genotypes and characteristics of egg production were calculated, and ROH patterns were identified. Results. Significant differences between genotypes were found in terms of age of laying the first egg (p 0.005) and egg weight (p 0.05). The genomic regions surrounding the target SNPs were analyzed according to the distribution of homozygous regions in them. Conclusions. The substitutions rs317565390 and rs16625488 located in the 4.810.2 Mb region on chromosome 8 showed polymorphism, despite the fact that homozygous loci in this region of the genome are found in 58% of animals. For most SNPs, the prevalence of the frequency of one of the alleles was observed. As a cluster of increased selection pressure, a chick genome region in the 4.810.2 Mb region on chromosome 8 was identified.


2019 ◽  
Vol 41 (10) ◽  
pp. 1135-1145
Author(s):  
Yonghong Xie ◽  
Yan Feng ◽  
Qi Chen ◽  
Feike Zhao ◽  
Shuijuan Zhou ◽  
...  

2019 ◽  
Vol 20 (9) ◽  
pp. 2168 ◽  
Author(s):  
Tussipkan Dilnur ◽  
Zhen Peng ◽  
Zhaoe Pan ◽  
Koffi Palanga ◽  
Yinhua Jia ◽  
...  

Salinity is not only a major environmental factor which limits plant growth and productivity, but it has also become a worldwide problem. However, little is known about the genetic basis underlying salt tolerance in cotton. This study was carried out to identify marker-trait association signals of seven salt-tolerance-related traits and one salt tolerance index using association analysis for 215 accessions of Asiatic cotton. According to a comprehensive index of salt tolerance (CIST), 215 accessions were mainly categorized into four groups, and 11 accessions with high salinity tolerance were selected for breeding. Genome-wide association studies (GWAS) revealed nine SNP rich regions significantly associated with relative fresh weight (RFW), relative stem length (RSL), relative water content (RWC) and CIST. The nine SNP rich regions analysis revealed 143 polymorphisms that distributed 40 candidate genes and significantly associated with salt tolerance. Notably, two SNP rich regions on chromosome 7 were found to be significantly associated with two salinity related traits, RFW and RSL, by the threshold of −log10P ≥ 6.0, and two candidate genes (Cotton_A_37775 and Cotton_A_35901) related to two key SNPs (Ca7_33607751 and Ca7_77004962) were possibly associated with salt tolerance in G. arboreum. These can provide fundamental information which will be useful for future molecular breeding of cotton, in order to release novel salt tolerant cultivars.


2018 ◽  
Vol 25 (2) ◽  
pp. 278
Author(s):  
Yuejing YANG ◽  
Mengbin XIANG ◽  
Xiangyi YE ◽  
Zhengshi ZHANG ◽  
Hui LUO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document