scholarly journals Bacillus velezensis T149-19 and Bacillus safensis T052-76 as Potential Biocontrol Agents against Foot Rot Disease in Sweet Potato

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1046
Author(s):  
Jackeline Rossetti Mateus ◽  
Isabella Dal’Rio ◽  
Diogo Jurelevicius ◽  
Fabio Faria da Mota ◽  
Joana Montezano Marques ◽  
...  

Sweet potato (Ipomoea batatas) tuberous roots are used for human consumption, animal feed, and many industrial products. However, the crop is susceptible to various pests and diseases, including foot rot disease caused by the phytopathogenic fungus Plenodomus destruens. Biological control of plant pathogens by Bacillus species is widely disseminated in agrosystems, but specific biological control agents against the foot rot disease-causing fungus are not yet available. Our previous studies showed that two Bacillus strains isolated from sweet potato roots—B. safensis T052-76 and B. velezensis T149-19—were able to inhibit P. destruens in vitro, but data from in vivo experiments using simultaneously the fungus and the bacteria were missing. In this study, both strains were shown to protect the plant from the disease and to mitigate the symptoms of foot rot disease in pot experiments. Total fungal community quantification using real-time PCR showed a significant decrease in the number of copies of the ITS gene when the bacteria were inoculated, compared to the control (with the fungus only). To determine the genes encoding antimicrobial substances likely to inhibit the fungus, their genomes were sequenced and annotated. Genes coding for mycosubtilin, bacillaene, macrolactin, bacillibactin, bacilysin, plantazolicin, plipastatin, dificidine, fengycin and surfactin were found in B. velezensis T149-19, while those coding for bacylisin, lichenysin, bacillibactin, fengycin and surfactin were found in B. safensis T052-76. Altogether, the data presented here contribute to advancing the knowledge for the use of these Bacillus strains as biocontrol products in sweet potato.

Author(s):  
Ai Maeda ◽  
Ayaka Minoshima ◽  
Shinji Kawano ◽  
Misa Nakamura ◽  
Tetsuya Takushi ◽  
...  

2018 ◽  
Vol 285 ◽  
pp. 44-55 ◽  
Author(s):  
Djordje Fira ◽  
Ivica Dimkić ◽  
Tanja Berić ◽  
Jelena Lozo ◽  
Slaviša Stanković

2018 ◽  
Vol 15 (2) ◽  
pp. 439-446
Author(s):  
Mitra Abootorabi

The excessive use of chemical pesticides to confront pests causes environmental pollution. Furthermore, plant pathogens resist chemical pesticides. When such pathogens accumulate in plants or soil, they will cause harmful effects on humans. Biological control is an alternative method that reduces or terminates the use of chemical compounds in agriculture. Biological control is also carried out by microorganisms. Bacteria are the main group of these microorganisms. Due to the extensive presence in the soil, tolerating changes of temperature, pH, and salinity as well as producing endospore resistant species, Bacillus bacteria are used in biological control of soil. Bacillus species are often found in soil and rhizosphere. These bacteria help with the control of plant pathogens by producing siderophore, secretion of enzymes, production of antibiotics and inducing systemic resistance. In this study, various biological control mechanisms which are carried out by microorganisms have been reviewed.


2020 ◽  
Vol 30 (11) ◽  
pp. 1180-1198 ◽  
Author(s):  
Afsana Hossain ◽  
Md. Mahidul Islam Masum ◽  
Xiuqin Wu ◽  
Yasmine Abdallah ◽  
Solabomi Olaitan Ogunyemi ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
LiFei Huang ◽  
Xin-Xin Zhang ◽  
Yi-Ling Yang ◽  
Hong-Da Zou ◽  
boping Fang ◽  
...  

Foot rot of sweet potato caused by Diaporthe destruens severely affects yield and quality worldwide. Research on this pathogen is limited due to non-availability of genome resources. Here, we report a high-quality genome sequence of D. destruens isolate CRI 305-2,which was originally isolated from infected stem of sweet potato in Taizhou City, Zhejiang Province, China. The genome comprised a total length of 56,108,228 bp, consisted of 47 scaffolds with an overall G+C content of 48.7% and an N50 of 2,479,481 bp. This resource that can be used as a reference for evolution mechanisms and comparative genomic research.


2021 ◽  
Vol 8 ◽  
Author(s):  
Joachim R. de Miranda ◽  
Fredrik Granberg ◽  
Matthew Low ◽  
Piero Onorati ◽  
Emilia Semberg ◽  
...  

Insects generally have high reproductive rates leading to rapid population growth and high local densities; ideal conditions for disease epidemics. The parasites and diseases that naturally regulate wild insect populations can also impact when these insects are produced commercially, on farms. While insects produced for human or animal consumption are often reared under high density conditions, very little is known about the microbes associated with these insects, particularly those with pathogenic potential. In this study we used both target-free and targeted screening approaches to explore the virome of two cricket species commonly reared for feed and food, Acheta domesticus and Gryllus bimaculatus. The target-free screening of DNA and RNA from a single A. domesticus frass sample revealed that only 1% of the nucleic acid reads belonged to viruses, including known cricket, insect, bacterial and plant pathogens, as well as a diverse selection of novel viruses. The targeted screening revealed relatively high levels of Acheta domesticus densovirus, invertebrate iridovirus 6 and a novel iflavirus, as well as low levels of Acheta domesticus volvovirus, in insect and frass samples from several retailers. Our findings highlight the value of multiple screening approaches for a comprehensive and robust cricket disease monitoring and management strategy. This will become particularly relevant as-and-when cricket rearing facilities scale up and transform from producing insects for animal feed to producing insects for human consumption.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 606 ◽  
Author(s):  
Khayalethu Ntushelo ◽  
Lesiba Klaas Ledwaba ◽  
Molemi Evelyn Rauwane ◽  
Oluwafemi Ayodeji Adebo ◽  
Patrick Berka Njobeh

Fusarium graminearum is a pervasive plant pathogenic fungal species. Biological control agents employ various strategies to weaken their targets, as shown by Bacillus species, which adopt various mechanisms, including the production of bioactive compounds, to inhibit the growth of F. graminearum. Various efforts to uncover the antagonistic mechanisms of Bacillus against F. graminearum have been undertaken and have yielded a plethora of data available in the current literature. This perspective article attempts to provide a unified record of these interesting findings. The authors provide background knowledge on the use of Bacillus as a biocontrol agent as well as details on techniques and tools for studying the antagonistic mechanism of Bacillus against F. graminearum. Emphasizing its potential as a future biological control agent with extensive use, the authors encourage future studies on Bacillus as a useful antagonist of F. graminearum and other plant pathogens. It is also recommended to take advantage of the newly invented analytical platforms for studying biochemical processes to understand the mechanism of action of Bacillus against plant pathogens in general.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kazuki Fujiwara ◽  
Yuki O. Kobayashi ◽  
Manami Usui ◽  
Kazuya Nishioka ◽  
Misa Nakamura ◽  
...  

Foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) has become a major concern for the production of sweet potato [Ipomoea batatas (L.) Lam.] in Japan. A related fungus Diaporthe batatas, which causes dry rot disease of sweet potato, is native and is widespread in fields in Japan. The similar characteristics of these two pathogens pose a challenge for conventional disease diagnosis. Currently, there are no effective molecular measures for identifying and distinguishing D. destruens and D. batatas. Here, we demonstrate a real-time PCR assay that distinguishes and quantifies D. batatas and D. destruens from co-infected sweet potato. The assay was performed with various simulated DNA combinations of D. batatas and D. destruens ranging from 1:1 to 1:100000. The assay was also used with the ratios of D. batatas: D. destruens: sweet potato DNA ranging from 1:1:1 to 1:1:100000. These assays produced a specific amplification product for each of the pathogens, and quantified the fungal biomass over the entire range tested without detecting false positives. The assay was validated by using infected sweet potato collected from various fields; it showed sufficient sensitivity and specificity to quantify and distinguish D. batatas and D. destruens from these field samples. Thus, our real-time PCR assay would be a useful tool for diagnosis of D. batatas and D. destruens and is expected to provide the foundation for the design of integrated disease management strategies for foot rot disease in sweet potato.


Agrotek ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Andrew B. Pattikawa ◽  
Antonius Suparno ◽  
Saraswati Prabawardani

<em>Sweet potato is an important staple food crop especially for the local people of Central Highlands Jayawijaya. There are many accessions that have always been maintained its existence to enrich their various uses. Traditionally, sweet potato accessions were grouped based on the utilization, such as for animal feed, cultural ceremonies, consumption for adults, as well as for infants and children. This study was aimed to analyze the nutritional value of sweet potatoes consumed by infants and children of the Dani tribe. Chemical analyses were conducted at the Laboratory of Post-Harvest Research and Development Center, Cimanggu, Bogor. The results showed that each of 4 (four) sweet potato accessions which were consumed by infants and children had good nutrient levels. Accession Sabe showed the highest water content (72.56%), vitamin C (72.71 mg/100 g), Fe (11.85 mg/100 g), and K levels (130.41 mg / 100 grams). The highest levels of protein (1.44%), fat (1.00%), energy (154.43 kkal/100 gram), carbohydrate (35.47%), starch (30.26%), reducing sugar (3.44%), riboflavin (0.18 mg/100 g), and vitamin A (574.40 grams IU/100 were produced by accession Manis. On the other hand, accession Saborok produced the highest value for ash content (1.32%), vitamin E (28.30 mg/100 g), and ?-carotene (64.69 ppm). The highest level of crude fiber (1.81 %) and thiamin (0.36 mg/100 g) was produced by accession Yuaiken.</em>


Sign in / Sign up

Export Citation Format

Share Document